Bayesian Inference Based on Monte Carlo Technique for Multiplier of Performance Shaping Factor

Satoshi Takeda, Takanori Kitada
{"title":"Bayesian Inference Based on Monte Carlo Technique for Multiplier of Performance Shaping Factor","authors":"Satoshi Takeda, Takanori Kitada","doi":"10.1115/1.4065531","DOIUrl":null,"url":null,"abstract":"\n The Human Error Probabilities (HEP) can be estimated using multipliers that correspond to the level of Performance Shaping Factors (PSFs) in the Human Reliability Analysis (HRA). This paper focuses on the adjustment of multipliers through Bayesian inference based on Monte Carlo techniques using the experimental results from simulators. Markov Chain Monte Carlo (MCMC) and Bayesian Monte Carlo (BMC) are used as Bayesian inference methods based on Monte Carlo techniques. MCMC is utilized to obtain the posterior distribution of the multipliers. BMC is used for the estimation of the moments of the posterior distribution such as the mean and variance. The results obtained by MCMC and that by BMC well agree with the reference results. As a case study, the data assimilation was performed using the results of the simulator experiment of Halden reactor. The results show that the multiplier changes by the result of a particular scenario and HEP of another scenario that uses the same multiplier also changes by data assimilation. Also, in the case study, the correlation between multipliers is obtained by the data assimilation and the correlation contributes to the reduction of uncertainty of HEP.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":"58 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Human Error Probabilities (HEP) can be estimated using multipliers that correspond to the level of Performance Shaping Factors (PSFs) in the Human Reliability Analysis (HRA). This paper focuses on the adjustment of multipliers through Bayesian inference based on Monte Carlo techniques using the experimental results from simulators. Markov Chain Monte Carlo (MCMC) and Bayesian Monte Carlo (BMC) are used as Bayesian inference methods based on Monte Carlo techniques. MCMC is utilized to obtain the posterior distribution of the multipliers. BMC is used for the estimation of the moments of the posterior distribution such as the mean and variance. The results obtained by MCMC and that by BMC well agree with the reference results. As a case study, the data assimilation was performed using the results of the simulator experiment of Halden reactor. The results show that the multiplier changes by the result of a particular scenario and HEP of another scenario that uses the same multiplier also changes by data assimilation. Also, in the case study, the correlation between multipliers is obtained by the data assimilation and the correlation contributes to the reduction of uncertainty of HEP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蒙特卡洛技术的贝叶斯推理,用于计算性能塑造因子的乘数
人的失误概率(HEP)可以使用乘数来估算,乘数与人的可靠性分析(HRA)中的性能影响因素(PSF)水平相对应。本文的重点是利用模拟器的实验结果,通过基于蒙特卡洛技术的贝叶斯推理对乘数进行调整。马尔可夫链蒙特卡洛(MCMC)和贝叶斯蒙特卡洛(BMC)是基于蒙特卡洛技术的贝叶斯推理方法。MCMC 用于获得乘数的后验分布。BMC 用于估计后验分布的矩,如均值和方差。MCMC 和 BMC 得出的结果与参考结果完全一致。作为案例研究,我们使用哈尔登反应堆模拟器实验的结果进行了数据同化。结果表明,乘数会因特定方案的结果而改变,而使用相同乘数的另一方案的 HEP 也会因数据同化而改变。此外,在案例研究中,乘数之间的相关性是通过数据同化获得的,这种相关性有助于降低 HEP 的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uncertainty-Aware, Structure-Preserving Machine Learning Approach for Domain Shift Detection From Nonlinear Dynamic Responses of Structural Systems Random Dynamic Responses of Two Parallel Interfacial Cracks Between A Functionally Graded Material Strip And Two Dissimilar Elastic Strips Bayesian Model Updating of Multiscale Simulations Informing Corrosion Prognostics Using Conditional Invertible Neural Networks Deep Learning-Based Multi-Fidelity Surrogate Modeling for High Dimensional Reliability Prediction Special Issue on Probabilistic Digital Twins in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1