Non-Markovian Cost Function for Quantum Error Mitigation

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-05-16 DOI:10.1002/qute.202300138
Doyeol Ahn, Byeongyong Park
{"title":"Non-Markovian Cost Function for Quantum Error Mitigation","authors":"Doyeol Ahn,&nbsp;Byeongyong Park","doi":"10.1002/qute.202300138","DOIUrl":null,"url":null,"abstract":"<p>In near-term quantum computers like noisy intermediate-scale quantum (NISQ) devices, reducing the impact of errors and decoherence is critical for practical implementation. Existing studies have primarily focused on Markovian noise sources; however, understanding the relationship between quantum error mitigation (QEM) and non-Markovian noise sources is essential, as these effects are practically unavoidable in most solid-state devices used for quantum computing. Here, a non-Markovian model of quantum state evolution and a QEM cost function of controlled-NOT (CNOT) gate operation are presented for NISQ devices interacting with an environment characterized by simple harmonic oscillators as a noise source. Using the projection operator formalism and both advanced and retarded propagators in time, the reduced-density operator is derived for output quantum states in a time-convolutionless form by solving the quantum Liouville equation. Output quantum state fluctuations are analyzed for identity and CNOT gate operations in two-qubit operations across various input states and compare these results with experimental data from ion-trap and superconducting quantum computing systems to estimate the key parameters of the QEM cost functions. These findings demonstrate that the QEM cost function increases as the coupling strength between the quantum system and its environment intensifies. This study highlights the significance of non-Markovian models for understanding quantum state evolution and the practical implications of the QEM cost function in assessing experimental results from NISQ devices.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202300138","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In near-term quantum computers like noisy intermediate-scale quantum (NISQ) devices, reducing the impact of errors and decoherence is critical for practical implementation. Existing studies have primarily focused on Markovian noise sources; however, understanding the relationship between quantum error mitigation (QEM) and non-Markovian noise sources is essential, as these effects are practically unavoidable in most solid-state devices used for quantum computing. Here, a non-Markovian model of quantum state evolution and a QEM cost function of controlled-NOT (CNOT) gate operation are presented for NISQ devices interacting with an environment characterized by simple harmonic oscillators as a noise source. Using the projection operator formalism and both advanced and retarded propagators in time, the reduced-density operator is derived for output quantum states in a time-convolutionless form by solving the quantum Liouville equation. Output quantum state fluctuations are analyzed for identity and CNOT gate operations in two-qubit operations across various input states and compare these results with experimental data from ion-trap and superconducting quantum computing systems to estimate the key parameters of the QEM cost functions. These findings demonstrate that the QEM cost function increases as the coupling strength between the quantum system and its environment intensifies. This study highlights the significance of non-Markovian models for understanding quantum state evolution and the practical implications of the QEM cost function in assessing experimental results from NISQ devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子误差缓解的非马尔可夫成本函数
在噪声中量子(NISQ)器件等近期量子计算机中,减少误差和退相干的影响对于实际应用至关重要。现有研究主要关注马尔可夫噪声源;然而,了解量子误差缓解(QEM)与非马尔可夫噪声源之间的关系至关重要,因为这些影响在用于量子计算的大多数固态器件中实际上是不可避免的。本文介绍了量子态演化的非马尔可夫模型,以及受控-非受控(CNOT)门操作的 QEM 成本函数,适用于与以简谐振荡器为噪声源的环境相互作用的 NISQ 器件。利用投影算子形式主义以及时间上的先进和滞后传播者,通过求解量子利乌维尔方程,以无时间演化形式推导出输出量子态的减密度算子。分析了各种输入状态下双量子比特运算中身份门和 CNOT 门运算的输出量子态波动,并将这些结果与离子阱和超导量子计算系统的实验数据进行比较,从而估算出 QEM 成本函数的关键参数。这些研究结果表明,随着量子系统与其环境之间耦合强度的增强,QEM 成本函数也会增加。这项研究强调了非马尔可夫模型对于理解量子态演化的重要意义,以及 QEM 成本函数在评估 NISQ 设备实验结果方面的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Back Cover: Universal Quantum Fisher Information and Simultaneous Occurrence of Landau-Class and Topological-Class Transitions in Non-Hermitian Jaynes-Cummings Models (Adv. Quantum Technol. 10/2024) Front Cover: Solid-State Qubit as an On-Chip Controller for Non-Classical Field States (Adv. Quantum Technol. 10/2024) Inside Front Cover: Nonlinear Effect Analysis and Sensitivity Improvement in Spin Exchange Relaxation Free Atomic Magnetometers (Adv. Quantum Technol. 10/2024) Issue Information (Adv. Quantum Technol. 10/2024) Front Cover: Superconducting Diode Effect in a Constricted Nanowire (Adv. Quantum Technol. 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1