Deep Learning Insights into the Dynamic Effects of Photodynamic Therapy on Cancer Cells

Md. Rahman, Feihong Yan, Ruiyuan Li, Yu Wang, Lu Huang, Rongcheng Han, Yuqiang Jiang
{"title":"Deep Learning Insights into the Dynamic Effects of Photodynamic Therapy on Cancer Cells","authors":"Md. Rahman, Feihong Yan, Ruiyuan Li, Yu Wang, Lu Huang, Rongcheng Han, Yuqiang Jiang","doi":"10.3390/pharmaceutics16050673","DOIUrl":null,"url":null,"abstract":"Photodynamic therapy (PDT) shows promise in tumor treatment, particularly when combined with nanotechnology. This study examines the impact of deep learning, particularly the Cellpose algorithm, on the comprehension of cancer cell responses to PDT. The Cellpose algorithm enables robust morphological analysis of cancer cells, while logistic growth modelling predicts cellular behavior post-PDT. Rigorous model validation ensures the accuracy of the findings. Cellpose demonstrates significant morphological changes after PDT, affecting cellular proliferation and survival. The reliability of the findings is confirmed by model validation. This deep learning tool enhances our understanding of cancer cell dynamics after PDT. Advanced analytical techniques, such as morphological analysis and growth modeling, provide insights into the effects of PDT on hepatocellular carcinoma (HCC) cells, which could potentially improve cancer treatment efficacy. In summary, the research examines the role of deep learning in optimizing PDT parameters to personalize oncology treatment and improve efficacy.","PeriodicalId":508088,"journal":{"name":"Pharmaceutics","volume":"4 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16050673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) shows promise in tumor treatment, particularly when combined with nanotechnology. This study examines the impact of deep learning, particularly the Cellpose algorithm, on the comprehension of cancer cell responses to PDT. The Cellpose algorithm enables robust morphological analysis of cancer cells, while logistic growth modelling predicts cellular behavior post-PDT. Rigorous model validation ensures the accuracy of the findings. Cellpose demonstrates significant morphological changes after PDT, affecting cellular proliferation and survival. The reliability of the findings is confirmed by model validation. This deep learning tool enhances our understanding of cancer cell dynamics after PDT. Advanced analytical techniques, such as morphological analysis and growth modeling, provide insights into the effects of PDT on hepatocellular carcinoma (HCC) cells, which could potentially improve cancer treatment efficacy. In summary, the research examines the role of deep learning in optimizing PDT parameters to personalize oncology treatment and improve efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习揭示光动力疗法对癌细胞的动态影响
光动力疗法(PDT)在肿瘤治疗中大有可为,尤其是在与纳米技术结合时。本研究探讨了深度学习(尤其是 Cellpose 算法)对理解癌细胞对光动力疗法反应的影响。Cellpose 算法能对癌细胞进行稳健的形态学分析,而逻辑生长模型则能预测 PDT 治疗后的细胞行为。严格的模型验证确保了研究结果的准确性。Cellpose 显示,PDT 后细胞形态发生了显著变化,影响了细胞的增殖和存活。模型验证证实了研究结果的可靠性。这一深度学习工具增强了我们对局部放疗后癌细胞动态的了解。形态学分析和生长建模等先进的分析技术让我们深入了解了PDT对肝细胞癌(HCC)细胞的影响,从而有可能提高癌症治疗效果。总之,这项研究探讨了深度学习在优化 PDT 参数以实现肿瘤治疗个性化和提高疗效方面的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Increase in the Plasticity of Microcrystalline Cellulose Spheres’ When Loaded with a Plasticizer Chemodynamic Therapy of Glioblastoma Multiforme and Perspectives Antitumor Activity of a Pyrrolobenzodiazepine Antibody–Drug Conjugate Targeting LGR5 in Preclinical Models of Neuroblastoma Advancements in Insulin Pumps: A Comprehensive Exploration of Insulin Pump Systems, Technologies, and Future Directions Spray-Dried Nanolipid Powders for Pulmonary Drug Delivery: A Comprehensive Mini Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1