{"title":"Generalized flutter reliability analysis with adjoint and direct approaches for aeroelastic eigen-pair derivatives computation","authors":"Sandeep Kumar","doi":"10.1007/s11012-024-01807-0","DOIUrl":null,"url":null,"abstract":"<div><p>The article presents physics based time invariant generalized flutter reliability approach for a wing in detail. For carrying flutter reliability analysis, a generalized first order reliability method (FORM) and a generalized second order reliability method (SORM) algorithms are developed. The FORM algorithm requires first derivative and the SORM algorithm requires both the first and second derivatives of a limit state function; and for these derivatives, an adjoint and a direct approaches for computing eigen-pair derivatives are proposed by ensuring uniqueness in eigenvector and its derivative. The stability parameter, damping ratio (real part of an eigenvalue), is considered as implicit type limit state function. To show occurrence of the flutter phenomenon, the limit state function is defined in conditional sense by imposing a condition on flow velocity. The aerodynamic parameter: slope of the lift coefficient curve (<span>\\(C_{L}\\)</span>) and structural parameters: bending rigidity (<i>EI</i>) and torsional rigidity (<i>GJ</i>) of an aeroelastic system are considered as independent Gaussian random variables, and also the structural parameters are modeled as second-order constant mean stationary Gaussian random fields having exponential type covariance structures. To represent the random fields in finite dimensions, the fields are discretized using Karhunen–Loeve expansion. The analysis shows that the derivatives of an eigenvalue obtained from both the adjoint and direct approaches are the same. So the cumulative distribution functions (CDFs) of flutter velocity will be the same, irrespective of the approach chosen, and it is also reflected in CDFs obtained using various reliability methods based on adjoint and direct approaches: first order second moment method, generalized FORM, and generalized SORM.</p></div>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"59 5","pages":"761 - 791"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11012-024-01807-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents physics based time invariant generalized flutter reliability approach for a wing in detail. For carrying flutter reliability analysis, a generalized first order reliability method (FORM) and a generalized second order reliability method (SORM) algorithms are developed. The FORM algorithm requires first derivative and the SORM algorithm requires both the first and second derivatives of a limit state function; and for these derivatives, an adjoint and a direct approaches for computing eigen-pair derivatives are proposed by ensuring uniqueness in eigenvector and its derivative. The stability parameter, damping ratio (real part of an eigenvalue), is considered as implicit type limit state function. To show occurrence of the flutter phenomenon, the limit state function is defined in conditional sense by imposing a condition on flow velocity. The aerodynamic parameter: slope of the lift coefficient curve (\(C_{L}\)) and structural parameters: bending rigidity (EI) and torsional rigidity (GJ) of an aeroelastic system are considered as independent Gaussian random variables, and also the structural parameters are modeled as second-order constant mean stationary Gaussian random fields having exponential type covariance structures. To represent the random fields in finite dimensions, the fields are discretized using Karhunen–Loeve expansion. The analysis shows that the derivatives of an eigenvalue obtained from both the adjoint and direct approaches are the same. So the cumulative distribution functions (CDFs) of flutter velocity will be the same, irrespective of the approach chosen, and it is also reflected in CDFs obtained using various reliability methods based on adjoint and direct approaches: first order second moment method, generalized FORM, and generalized SORM.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.