Reem Altuijri, M. M. Abdelhamied, A. Atta, Nuha Al-Harbi, A. Henaish
{"title":"Enhancing the dielectric characteristics of argon beam irradiated polymer composite films","authors":"Reem Altuijri, M. M. Abdelhamied, A. Atta, Nuha Al-Harbi, A. Henaish","doi":"10.1680/jsuin.24.00003","DOIUrl":null,"url":null,"abstract":"In this study, the casting prepration technique is applied to produce flexible CA/PANI composite films. The CA/PANI samples which are composed of polyaniline (PANI) and cellulose acetate (CA) are directed to applied in electrical storage devices. The XRD, FTIR, TEM, Ramman and SEM techniques were employed for analyzing the produced films. The TEM show the PANI were formed with the particle size less than 100 nm. Next, argon-ion beam with varying fluencies (4x1014, 8x1014 and 12x1014 ions/cm2) bombard the CA/PANI samples. In frequency of 20 Hz to 5.5 MHz, the dielectric properties of CA/PANI were significantly altered by argon beam treatment. The irradiated sample by 12x1014 ions/cm−2 at frequency 50 Hz resulted in an improvement in the dielectric constant ε′ from 36.4 for the unirradiated CA/PANI to 108.6. Additionally, the relaxation time decreased from 1.63x10−4 sec to 2.08x10−5 sec. The results of this work open the ways for using the irradiated CA/PANI in a number of devices, such as supercapacitors and batteries.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00003","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the casting prepration technique is applied to produce flexible CA/PANI composite films. The CA/PANI samples which are composed of polyaniline (PANI) and cellulose acetate (CA) are directed to applied in electrical storage devices. The XRD, FTIR, TEM, Ramman and SEM techniques were employed for analyzing the produced films. The TEM show the PANI were formed with the particle size less than 100 nm. Next, argon-ion beam with varying fluencies (4x1014, 8x1014 and 12x1014 ions/cm2) bombard the CA/PANI samples. In frequency of 20 Hz to 5.5 MHz, the dielectric properties of CA/PANI were significantly altered by argon beam treatment. The irradiated sample by 12x1014 ions/cm−2 at frequency 50 Hz resulted in an improvement in the dielectric constant ε′ from 36.4 for the unirradiated CA/PANI to 108.6. Additionally, the relaxation time decreased from 1.63x10−4 sec to 2.08x10−5 sec. The results of this work open the ways for using the irradiated CA/PANI in a number of devices, such as supercapacitors and batteries.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.