Green Fabrication of Stackable Laser-Induced Graphene Micro-Supercapacitors under Ambient Conditions: Toward the Design of Truly Sustainable Technological Platforms

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-05-16 DOI:10.1002/admt.202400261
Sara L. Silvestre, Maria Morais, Raquel R. A. Soares, Zachary T. Johnson, Eric Benson, Elisabeth Ainsley, Veronica Pham, Jonathan C. Claussen, Carmen L. Gomes, Rodrigo Martins, Elvira Fortunato, Luis Pereira, João Coelho
{"title":"Green Fabrication of Stackable Laser-Induced Graphene Micro-Supercapacitors under Ambient Conditions: Toward the Design of Truly Sustainable Technological Platforms","authors":"Sara L. Silvestre,&nbsp;Maria Morais,&nbsp;Raquel R. A. Soares,&nbsp;Zachary T. Johnson,&nbsp;Eric Benson,&nbsp;Elisabeth Ainsley,&nbsp;Veronica Pham,&nbsp;Jonathan C. Claussen,&nbsp;Carmen L. Gomes,&nbsp;Rodrigo Martins,&nbsp;Elvira Fortunato,&nbsp;Luis Pereira,&nbsp;João Coelho","doi":"10.1002/admt.202400261","DOIUrl":null,"url":null,"abstract":"<p>Extensive research into green technologies is driven by the worldwide push for eco-friendly materials and energy solutions. The focus is on synergies that prioritize sustainability and environmental benefits. This study explores the potential of abundant, non-toxic, and sustainable resources such as paper, lignin-enriched paper, and cork for producing laser-induced graphene (LIG) supercapacitor electrodes with improved capacitance. A single-step methodology using a CO<sub>2</sub> laser system is developed for fabricating these electrodes under ambient conditions, providing an environmentally friendly alternative to conventional carbon sources. The resulting green micro-supercapacitors (MSCs) achieve impressive areal capacitance (≈7–10 mF cm<sup>−2</sup>) and power and energy densities (≈4 μW cm<sup>-2</sup> and ≈0.77 µWh cm<sup>−2</sup> at 0.01 mA cm<sup>−2</sup>). Stability tests conducted over 5000 charge–discharge cycles demonstrate a capacitance retention of ≈80–85%, highlighting the device durability. These LIG-based devices offer versatility, allowing voltage output adjustment through stacked and sandwich MSCs configurations (parallel or series), suitable for various large-scale applications. This study demonstrates that it is possible to create high-quality energy storage devices based on biodegradable materials. This development can lead to progress in renewable energy and off-grid technology, as well as a reduction in electronic waste.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admt.202400261","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400261","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Extensive research into green technologies is driven by the worldwide push for eco-friendly materials and energy solutions. The focus is on synergies that prioritize sustainability and environmental benefits. This study explores the potential of abundant, non-toxic, and sustainable resources such as paper, lignin-enriched paper, and cork for producing laser-induced graphene (LIG) supercapacitor electrodes with improved capacitance. A single-step methodology using a CO2 laser system is developed for fabricating these electrodes under ambient conditions, providing an environmentally friendly alternative to conventional carbon sources. The resulting green micro-supercapacitors (MSCs) achieve impressive areal capacitance (≈7–10 mF cm−2) and power and energy densities (≈4 μW cm-2 and ≈0.77 µWh cm−2 at 0.01 mA cm−2). Stability tests conducted over 5000 charge–discharge cycles demonstrate a capacitance retention of ≈80–85%, highlighting the device durability. These LIG-based devices offer versatility, allowing voltage output adjustment through stacked and sandwich MSCs configurations (parallel or series), suitable for various large-scale applications. This study demonstrates that it is possible to create high-quality energy storage devices based on biodegradable materials. This development can lead to progress in renewable energy and off-grid technology, as well as a reduction in electronic waste.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在环境条件下绿色制造可堆叠激光诱导石墨烯微型超级电容器:设计真正可持续的技术平台
全世界都在推动环保材料和能源解决方案,这推动了对绿色技术的广泛研究。重点是优先考虑可持续发展和环境效益的协同作用。本研究探讨了纸张、富含木质素的纸张和软木塞等丰富、无毒和可持续资源在生产具有更高电容的激光诱导石墨烯(LIG)超级电容器电极方面的潜力。利用二氧化碳激光系统开发了一种在环境条件下制造这些电极的单步方法,为传统碳源提供了一种环境友好型替代品。由此产生的绿色微型超级电容器(MSCs)实现了惊人的面积电容(≈7-10 mF cm-2)以及功率和能量密度(≈4 μW cm-2,0.01 mA cm-2时≈0.77 µWh cm-2)。经过 5000 个充放电周期的稳定性测试表明,电容保持率≈80-85%,突出表明了器件的耐用性。这些基于 LIG 的器件具有多功能性,可通过堆叠和夹层 MSC 配置(并联或串联)调整电压输出,适合各种大规模应用。这项研究表明,利用可生物降解材料制造高质量的储能装置是可能的。这一发展可推动可再生能源和离网技术的进步,并减少电子垃圾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
Ambipolar Charge Injection and Bright Light Emission in Hybrid Oxide/Polymer Transistors Doped with Poly(9-Vinylcarbazole) Based Polyelectrolytes (Adv. Mater. Technol. 20/2024) 3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide (Adv. Mater. Technol. 20/2024) Hierarchical Composites Patterned via 3D Printed Cellular Fluidics (Adv. Mater. Technol. 20/2024) An Artificial Tactile Perception System with Spatio-Temporal Recognition Capability (Adv. Mater. Technol. 20/2024) Masthead: (Adv. Mater. Technol. 20/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1