The importance of data preconditioning strategies for envelope full waveform inversion methods: demonstration on marine seismic data

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2024-05-16 DOI:10.1190/geo2023-0322.1
Kai Xiong, David Lumley, Wei Zhou
{"title":"The importance of data preconditioning strategies for envelope full waveform inversion methods: demonstration on marine seismic data","authors":"Kai Xiong, David Lumley, Wei Zhou","doi":"10.1190/geo2023-0322.1","DOIUrl":null,"url":null,"abstract":"Envelope full waveform inversion (EI) of seismic data has been proposed to overcome the cycle-skipping issue and recover long-wavelength velocity components for over a decade. However, there are few published successful applications of EI on real data examples (except for some correlation-based or phase-based EI methods) that we are aware of. We implement envelope inversion methods (EI with p=2, EI with p=1 and improved envelope inversion (IEI)) on 2D marine seismic data and find that the amplitude-mismatching between the modeled and observed data is a critical factor that prevents the successful application of EI methods on real data. To match amplitude better, we include a data weighting preconditioner in the objective function of EI methods. The preconditioner term acts as a weighting factor to compensate for the amplitude mismatch between observed and modeled data. We propose a method for calculating the preconditioner term using the amplitude of the head waves as a reference. Furthermore, we derive the adjoint source and gradient of envelope inversion using the data preconditioning method. We illustrate the successful application of envelope inversion methods with the data preconditioning method using the 2D marine seismic data example. In comparison to envelope inversion methods without the data preconditioning method, those employing the data preconditioning yield much more geophysically reasonable velocity models and Kirchhoff image sections and Common Image Gathers (CIGs).","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2023-0322.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Envelope full waveform inversion (EI) of seismic data has been proposed to overcome the cycle-skipping issue and recover long-wavelength velocity components for over a decade. However, there are few published successful applications of EI on real data examples (except for some correlation-based or phase-based EI methods) that we are aware of. We implement envelope inversion methods (EI with p=2, EI with p=1 and improved envelope inversion (IEI)) on 2D marine seismic data and find that the amplitude-mismatching between the modeled and observed data is a critical factor that prevents the successful application of EI methods on real data. To match amplitude better, we include a data weighting preconditioner in the objective function of EI methods. The preconditioner term acts as a weighting factor to compensate for the amplitude mismatch between observed and modeled data. We propose a method for calculating the preconditioner term using the amplitude of the head waves as a reference. Furthermore, we derive the adjoint source and gradient of envelope inversion using the data preconditioning method. We illustrate the successful application of envelope inversion methods with the data preconditioning method using the 2D marine seismic data example. In comparison to envelope inversion methods without the data preconditioning method, those employing the data preconditioning yield much more geophysically reasonable velocity models and Kirchhoff image sections and Common Image Gathers (CIGs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据预处理策略对包络全波形反演方法的重要性:海洋地震数据演示
为克服周期跳跃问题并恢复长波长速度成分,地震数据包络全波形反演(EI)已提出十多年。然而,据我们所知,EI 在实际数据实例中的成功应用(除一些基于相关性或相位的 EI 方法外)很少公开发表。我们在二维海洋地震数据上实施了包络反演方法(p=2 的包络反演、p=1 的包络反演和改进的包络反演 (IEI)),发现建模数据和观测数据之间的振幅不匹配是阻碍包络反演方法在实际数据上成功应用的关键因素。为了更好地匹配振幅,我们在 EI 方法的目标函数中加入了数据加权预处理项。前置条件项作为一个加权因子,用于补偿观测数据和建模数据之间的振幅不匹配。我们提出了一种使用头波振幅作为参考来计算前置条件项的方法。此外,我们还利用数据预处理方法推导出了包络反演的邻接源和梯度。我们以二维海洋地震数据为例,说明了包络反演方法与数据预处理方法的成功应用。与不使用数据预处理方法的包络反演方法相比,使用数据预处理方法的包络反演方法得到的速度模型、基尔霍夫像剖面和普通像聚(CIG)在地球物理上更加合理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
Velocity model-based adapted meshes using optimal transport An Efficient Cascadic Multigrid Method with Regularization Technique for 3-D Electromagnetic Finite-Element Anisotropic Modelling Noise Attenuation in Distributed Acoustic Sensing Data Using a Guided Unsupervised Deep Learning Network Non-stationary adaptive S-wave suppression of ocean bottom node data Method and application of sand body thickness prediction based on virtual sample-machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1