Elin L. Blomqvist, E. Orlikowska, Hanna Paikert, R. L. Eckstein
{"title":"The effects of dry heat and steam on germination of dry and imbibed seeds of the invasive garden lupine (Lupinus polyphyllus Lindl.)","authors":"Elin L. Blomqvist, E. Orlikowska, Hanna Paikert, R. L. Eckstein","doi":"10.1017/inp.2024.14","DOIUrl":null,"url":null,"abstract":"\n Regularly mown road verges are an important habitat for conservation of grassland vegetation. Disturbance and movement of seed-contaminated soil during road construction and maintenance makes road verges susceptible to the establishment of invasive alien plants such as garden lupine (Lupinus polyphyllus Lindl.). To combat spread of L. polyphyllus via seeds, we tested methods for seed destruction using heat. This study aimed at developing heat eradication methods for dry and imbibed L. polyphyllus seeds applying dry heat (88, 93, 98, 103 C at 1, 3, 5, 10 min) in a laboratory, steam (85, 90, 95 C at 3, 5, 10 min) in a test-box steaming device and (97 C at 10-17 min; dry seeds only) in a stationary soil-steaming machine (S30). In order to speed up water absorption and post-treatment germination, the imbibed seeds were manually scarified before the heat treatment and the dry seeds afterwards. Additionally, germination of two different age seed batches was tested applying dry heat (88, 98 C at 3, 5 min). The results showed that steam treatments inhibited seed germination more than dry heat in both dry and imbibed seeds. Germination dropped to < 5% when steamed at ≥ 90 C or dry-heated at > 100 C. Seed germination decreased with higher temperatures and longer exposure times. Imbibed seeds exhibited lower germination compared to dry seeds for dry and steam heat. Approximately 0.5% of dry seeds germinated when steamed using S30. 2022-collected seeds were less sensitive to dry heat than seeds from 2020. In conclusion, hot steam is more effective in reducing L. polyphyllus seed germination than dry heat. Thus, to successfully eradicate L. polyphyllus seeds in soil masses, we recommend steaming them at 97 C for at least 10 minutes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/inp.2024.14","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Regularly mown road verges are an important habitat for conservation of grassland vegetation. Disturbance and movement of seed-contaminated soil during road construction and maintenance makes road verges susceptible to the establishment of invasive alien plants such as garden lupine (Lupinus polyphyllus Lindl.). To combat spread of L. polyphyllus via seeds, we tested methods for seed destruction using heat. This study aimed at developing heat eradication methods for dry and imbibed L. polyphyllus seeds applying dry heat (88, 93, 98, 103 C at 1, 3, 5, 10 min) in a laboratory, steam (85, 90, 95 C at 3, 5, 10 min) in a test-box steaming device and (97 C at 10-17 min; dry seeds only) in a stationary soil-steaming machine (S30). In order to speed up water absorption and post-treatment germination, the imbibed seeds were manually scarified before the heat treatment and the dry seeds afterwards. Additionally, germination of two different age seed batches was tested applying dry heat (88, 98 C at 3, 5 min). The results showed that steam treatments inhibited seed germination more than dry heat in both dry and imbibed seeds. Germination dropped to < 5% when steamed at ≥ 90 C or dry-heated at > 100 C. Seed germination decreased with higher temperatures and longer exposure times. Imbibed seeds exhibited lower germination compared to dry seeds for dry and steam heat. Approximately 0.5% of dry seeds germinated when steamed using S30. 2022-collected seeds were less sensitive to dry heat than seeds from 2020. In conclusion, hot steam is more effective in reducing L. polyphyllus seed germination than dry heat. Thus, to successfully eradicate L. polyphyllus seeds in soil masses, we recommend steaming them at 97 C for at least 10 minutes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.