FI‐Net: Rethinking Feature Interactions for Medical Image Segmentation

Yuhan Ding, Jinhui Liu, Yunbo He, Jinliang Huang, Haisu Liang, Zhenglin Yi, Yongjie Wang
{"title":"FI‐Net: Rethinking Feature Interactions for Medical Image Segmentation","authors":"Yuhan Ding, Jinhui Liu, Yunbo He, Jinliang Huang, Haisu Liang, Zhenglin Yi, Yongjie Wang","doi":"10.1002/aisy.202400201","DOIUrl":null,"url":null,"abstract":"To solve the problems of existing hybrid networks based on convolutional neural networks (CNN) and Transformers, we propose a new encoder–decoder network FI‐Net based on CNN‐Transformer for medical image segmentation. In the encoder part, a dual‐stream encoder is used to capture local details and long‐range dependencies. Moreover, the attentional feature fusion module is used to perform interactive feature fusion of dual‐branch features, maximizing the retention of local details and global semantic information in medical images. At the same time, the multi‐scale feature aggregation module is used to aggregate local information and capture multi‐scale context to mine more semantic details. The multi‐level feature bridging module is used in skip connections to bridge multi‐level features and mask information to assist multi‐scale feature interaction. Experimental results on seven public medical image datasets fully demonstrate the effectiveness and advancement of our method. In future work, we plan to extend FI‐Net to support 3D medical image segmentation tasks and combine self‐supervised learning and knowledge distillation to alleviate the overfitting problem of limited data training.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202400201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the problems of existing hybrid networks based on convolutional neural networks (CNN) and Transformers, we propose a new encoder–decoder network FI‐Net based on CNN‐Transformer for medical image segmentation. In the encoder part, a dual‐stream encoder is used to capture local details and long‐range dependencies. Moreover, the attentional feature fusion module is used to perform interactive feature fusion of dual‐branch features, maximizing the retention of local details and global semantic information in medical images. At the same time, the multi‐scale feature aggregation module is used to aggregate local information and capture multi‐scale context to mine more semantic details. The multi‐level feature bridging module is used in skip connections to bridge multi‐level features and mask information to assist multi‐scale feature interaction. Experimental results on seven public medical image datasets fully demonstrate the effectiveness and advancement of our method. In future work, we plan to extend FI‐Net to support 3D medical image segmentation tasks and combine self‐supervised learning and knowledge distillation to alleviate the overfitting problem of limited data training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FI-Net:重新思考医学图像分割中的特征交互作用
为了解决现有的基于卷积神经网络(CNN)和变换器的混合网络存在的问题,我们提出了一种新的基于 CNN-Transformer 的编码器-解码器网络 FI-Net,用于医学图像分割。在编码器部分,双流编码器用于捕捉局部细节和长程依赖性。此外,注意力特征融合模块用于对双分支特征进行交互式特征融合,最大限度地保留医学图像中的局部细节和全局语义信息。同时,多尺度特征聚合模块用于聚合局部信息,捕捉多尺度上下文,挖掘更多语义细节。多级特征桥接模块用于跳转连接,桥接多级特征和掩码信息,以协助多尺度特征交互。在七个公共医疗图像数据集上的实验结果充分证明了我们方法的有效性和先进性。在未来的工作中,我们计划将 FI-Net 扩展到支持三维医学图像分割任务,并结合自监督学习和知识提炼来缓解有限数据训练的过拟合问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1