TEFLON: Thermally Efficient Dataflow-Aware 3D NoC for Accelerating CNN Inferencing on Manycore PIM Architectures

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-16 DOI:10.1145/3665279
Gaurav Narang, Chukwufumnanya Ogbogu, Jana Doppa, P. Pande
{"title":"TEFLON: Thermally Efficient Dataflow-Aware 3D NoC for Accelerating CNN Inferencing on Manycore PIM Architectures","authors":"Gaurav Narang, Chukwufumnanya Ogbogu, Jana Doppa, P. Pande","doi":"10.1145/3665279","DOIUrl":null,"url":null,"abstract":"\n Resistive random-access memory (ReRAM) based processing-in-memory (PIM) architectures are used extensively to accelerate inferencing/training with convolutional neural networks (CNNs). Three-dimensional (3D) integration is an enabling technology to integrate many PIM cores on a single chip. In this work, we propose the design of a thermally efficient dataflow-aware monolithic 3D (M3D) NoC architecture referred to as\n \n TEFLON\n \n to accelerate CNN inferencing without creating any thermal bottlenecks.\n \n TEFLON\n \n reduces the Energy-Delay-Product (EDP) by 4\n \n 2\\%\n \n ,\n \n 46\\%\n \n , and 45\n \n \\%\n \n on an average compared to a conventional 3D mesh NoC for systems with 36-, 64-, and 100-PIM cores respectively.\n \n TEFLON\n \n reduces the peak chip temperature by 25\n \n K\n \n and improves the inference accuracy by up to 11\n \n \\%\n \n compared to sole performance-optimized SFC-based counterpart for inferencing with diverse deep CNN models using CIFAR-10/100 datasets on a 3D system with 100-PIM cores.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"32 14","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Resistive random-access memory (ReRAM) based processing-in-memory (PIM) architectures are used extensively to accelerate inferencing/training with convolutional neural networks (CNNs). Three-dimensional (3D) integration is an enabling technology to integrate many PIM cores on a single chip. In this work, we propose the design of a thermally efficient dataflow-aware monolithic 3D (M3D) NoC architecture referred to as TEFLON to accelerate CNN inferencing without creating any thermal bottlenecks. TEFLON reduces the Energy-Delay-Product (EDP) by 4 2\% , 46\% , and 45 \% on an average compared to a conventional 3D mesh NoC for systems with 36-, 64-, and 100-PIM cores respectively. TEFLON reduces the peak chip temperature by 25 K and improves the inference accuracy by up to 11 \% compared to sole performance-optimized SFC-based counterpart for inferencing with diverse deep CNN models using CIFAR-10/100 datasets on a 3D system with 100-PIM cores.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TEFLON:用于在多核 PIM 架构上加速 CNN 推断的热效数据流感知 3D NoC
基于电阻式随机存取存储器(ReRAM)的内存处理(PIM)架构被广泛用于加速卷积神经网络(CNN)的推理/训练。三维(3D)集成是在单个芯片上集成多个 PIM 内核的有利技术。在这项工作中,我们提出了一种热高效数据流感知单片三维(M3D)NoC 架构(简称 TEFLON)的设计方案,以在不产生任何热瓶颈的情况下加速 CNN 推断。 与传统的三维网状NoC相比,TEFLON在36、64和100个PIM内核的系统中平均降低了4 2%、46%和45%的能耗延迟积(EDP)。 在具有100个PIM内核的三维系统上使用CIFAR-10/100数据集对不同的深度CNN模型进行推理时,TEFLON将芯片峰值温度降低了25 K,与基于SFC的唯一性能优化的对应方案相比,推理精度提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Nanoliposomal Co-Delivery of AR-PROTAC and NFKBIZ siRNA for Synergistic Therapy of Androgenetic Alopecia. Self-Integrating Multifunctional Amyloidogenic Protein-Fenugreek Composite Hydrogel Patch and Ointment for Accelerated Deep Muscle Wound Healing in Rabbit Model. Skin Substitutes: Ushering in a New Era of Transition from Traditional Dressings to Bioprinted Scaffolds. Reversible Assembly of Virus-Like Particles (VLPs) into Higher-Order Structures Controlled by Oxidation and Reduction of Linker Protein. Dual-Functional Porous UHMWPE Implant Eliminates Staphylococcus aureus Infection and Induces Osteogenesis in a Critical-Sized Segmental Femoral Defect Model in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1