Siti Fatimah Kamarudin, Nur Haziqah Abdul Aziz, Hing Wah Lee, Mariatti Jaafar, Suraya Sulaiman
{"title":"Inkjet Printing Optimization: Toward Realization of High-Resolution Printed Electronics","authors":"Siti Fatimah Kamarudin, Nur Haziqah Abdul Aziz, Hing Wah Lee, Mariatti Jaafar, Suraya Sulaiman","doi":"10.1002/admt.202301875","DOIUrl":null,"url":null,"abstract":"<p>The printed electronics (PEs) market has witnessed substantial growth, reaching a valuation of USD 10.47 billion in the previous year. Driven by its extensive use in a multitude of applications, this growth trend is expected to continue with a projected compound annual growth rate of 22.3% from 2022 to 2032. Compared to screen printing, the adoption of inkjet printing (IJP) technology to manufacture PEs has been limited to laboratory-scale research only. The fact that IJP's inability to maintain consistent high-resolution quality over large printing areas has made transitioning IJP for commercial production arduous. Most of the previous literatures have focused on holistic discussion on material design for IJP, but this review provides insight into key aspects in material processing up to printing optimization to realize high-resolution PEs. This review also highlights the challenges in controlling the functional ink properties and their interaction with the substrate as well as printing parameters to deliver the desired quality of the droplets and final prints. Imminent application of IJP in PEs and future perspectives are also included in this review.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202301875","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The printed electronics (PEs) market has witnessed substantial growth, reaching a valuation of USD 10.47 billion in the previous year. Driven by its extensive use in a multitude of applications, this growth trend is expected to continue with a projected compound annual growth rate of 22.3% from 2022 to 2032. Compared to screen printing, the adoption of inkjet printing (IJP) technology to manufacture PEs has been limited to laboratory-scale research only. The fact that IJP's inability to maintain consistent high-resolution quality over large printing areas has made transitioning IJP for commercial production arduous. Most of the previous literatures have focused on holistic discussion on material design for IJP, but this review provides insight into key aspects in material processing up to printing optimization to realize high-resolution PEs. This review also highlights the challenges in controlling the functional ink properties and their interaction with the substrate as well as printing parameters to deliver the desired quality of the droplets and final prints. Imminent application of IJP in PEs and future perspectives are also included in this review.
期刊介绍:
Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.