Li4.1P0.9Sn0.1S4I Solid Electrolyte with Favorable Air Stability for All-Solid-State Lithium Batteries

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-05-15 DOI:10.1021/acsaem.4c00616
Lu Zhang, Gaozhan Liu, Nini Zhang, Haichuan Yu and Xiayin Yao*, 
{"title":"Li4.1P0.9Sn0.1S4I Solid Electrolyte with Favorable Air Stability for All-Solid-State Lithium Batteries","authors":"Lu Zhang,&nbsp;Gaozhan Liu,&nbsp;Nini Zhang,&nbsp;Haichuan Yu and Xiayin Yao*,&nbsp;","doi":"10.1021/acsaem.4c00616","DOIUrl":null,"url":null,"abstract":"<p >Sulfide electrolytes are promising materials for all-solid-state lithium batteries because of their high ionic conductivity and good processability. However, the high reactivity of sulfide electrolytes with moisture leads to the structure decomposition and production of toxic H<sub>2</sub>S gas, which hinders their practical application. Herein, based on the Li<sub>3</sub>PS<sub>4</sub> solid electrolyte, the Li<sub>4.1</sub>P<sub>0.9</sub>Sn<sub>0.1</sub>S<sub>4</sub>I solid electrolyte is synthesized through LiI and Sn codoping, which merely generates 0.098 cm<sup>3</sup> g<sup>–1</sup> H<sub>2</sub>S gas after air exposure due to air-stable SnS<sub>4</sub><sup>4–</sup> groups and the protection of reactant LiI·H<sub>2</sub>O. Besides, the Li/Li<sub>4.1</sub>P<sub>0.9</sub>Sn<sub>0.1</sub>S<sub>4</sub>I/Li battery exhibits a high critical current density of up to 1.1 mA cm<sup>–2</sup> and an excellent cycling durability of 1500 h at a current density of 0.1 mA cm<sup>–2</sup>, suggesting great compatibility of the Li<sub>4.1</sub>P<sub>0.9</sub>Sn<sub>0.1</sub>S<sub>4</sub>I solid electrolyte with lithium metal. The Li<sub>4.1</sub>P<sub>0.9</sub>Sn<sub>0.1</sub>S<sub>4</sub>I-based all-solid-state lithium battery delivers an initial discharge specific capacity of 104.8 mAh g<sup>–1</sup> and maintains a reversible capacity of 76.9 mAh g<sup>–1</sup> after 1200 cycles at a high current density of 1C, making the Li<sub>4.1</sub>P<sub>0.9</sub>Sn<sub>0.1</sub>S<sub>4</sub>I solid electrolyte a promising candidate for all-solid-state lithium batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 10","pages":"4565–4571"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c00616","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfide electrolytes are promising materials for all-solid-state lithium batteries because of their high ionic conductivity and good processability. However, the high reactivity of sulfide electrolytes with moisture leads to the structure decomposition and production of toxic H2S gas, which hinders their practical application. Herein, based on the Li3PS4 solid electrolyte, the Li4.1P0.9Sn0.1S4I solid electrolyte is synthesized through LiI and Sn codoping, which merely generates 0.098 cm3 g–1 H2S gas after air exposure due to air-stable SnS44– groups and the protection of reactant LiI·H2O. Besides, the Li/Li4.1P0.9Sn0.1S4I/Li battery exhibits a high critical current density of up to 1.1 mA cm–2 and an excellent cycling durability of 1500 h at a current density of 0.1 mA cm–2, suggesting great compatibility of the Li4.1P0.9Sn0.1S4I solid electrolyte with lithium metal. The Li4.1P0.9Sn0.1S4I-based all-solid-state lithium battery delivers an initial discharge specific capacity of 104.8 mAh g–1 and maintains a reversible capacity of 76.9 mAh g–1 after 1200 cycles at a high current density of 1C, making the Li4.1P0.9Sn0.1S4I solid electrolyte a promising candidate for all-solid-state lithium batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为全固态锂电池提供具有良好空气稳定性的 Li4.1P0.9Sn0.1S4I 固体电解质
硫化物电解质具有高离子传导性和良好的加工性,是很有前途的全固态锂电池材料。然而,硫化物电解质与水分的高反应性导致其结构分解并产生有毒的 H2S 气体,从而阻碍了其实际应用。本文在 Li3PS4 固体电解质的基础上,通过 LiI 和 Sn 共掺合成了 Li4.1P0.9Sn0.1S4I 固体电解质,由于 SnS44- 基团在空气中稳定以及反应物 LiI-H2O 的保护,该电解质在空气暴露后仅产生 0.098 cm3 g-1 H2S 气体。此外,Li/Li4.1P0.9Sn0.1S4I/Li 电池的临界电流密度高达 1.1 mA cm-2,在电流密度为 0.1 mA cm-2 时的循环耐久性也达到了 1500 h,这表明 Li4.1P0.9Sn0.1S4I 固体电解质与金属锂具有很好的兼容性。基于 Li4.1P0.9Sn0.1S4I 的全固态锂电池的初始放电比容量为 104.8 mAh g-1,在 1C 的高电流密度下循环 1200 次后仍能保持 76.9 mAh g-1 的可逆容量,因此 Li4.1P0.9Sn0.1S4I 固体电解质有望成为全固态锂电池的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Employees' Reactions to a Citizen Incivility Climate: A Multilevel Multisource Study. A Longitudinal Dynamic Perspective on Quality in Journalism: Investigating the Long-Term Macro-Level Media Effect of Suicide Reporting on Suicide Rates Across a Century. Functional Concurrent Regression Mixture Models Using Spiked Ewens-Pitman Attraction Priors. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1