Terminal strip detection and recognition based on improved YOLOv7-tiny and MAH-CRNN+CTC models

Zhijun Guo, Weiming Luo, Qiujie Chen, Hongbo Zou
{"title":"Terminal strip detection and recognition based on improved YOLOv7-tiny and MAH-CRNN+CTC models","authors":"Zhijun Guo, Weiming Luo, Qiujie Chen, Hongbo Zou","doi":"10.3389/fenrg.2024.1345574","DOIUrl":null,"url":null,"abstract":"For substation secondary circuit terminal strip wiring, low efficiency, less easy fault detection and inspection, and a variety of other issues, this study proposes a text detection and identification model based on improved YOLOv7-tiny and MAH-CRNN+CTC terminal lines. First, the YOLOv7-tiny target detection model is improved by the introduction of the spatially invariant multi-attention mechanism (SimAM) and the weighted bidirectional feature pyramid network (BiFPN). This also improves the feature enhancements and feature fusion ability of the model, balances various scales of characteristic information, and increases the positioning accuracy of the text test box. Then, a multi-head attention hybrid (MAH) mechanism is implemented to optimize the convolutional recurrent neural network with connectionist temporal classification (CRNN+CTC) so that the model could learn data features with larger weights and increase the recognition accuracy of the model. The findings indicate that the enhanced YOLOv7-tiny model achieves 97.39%, 98.62%, and 95.07% of precision, recall, and mean average precision (mAP), respectively, on the detection dataset. The improved MAH-CRNN+CTC model achieves 91.2% character recognition accuracy in the recognition dataset.","PeriodicalId":503838,"journal":{"name":"Frontiers in Energy Research","volume":"61 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenrg.2024.1345574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For substation secondary circuit terminal strip wiring, low efficiency, less easy fault detection and inspection, and a variety of other issues, this study proposes a text detection and identification model based on improved YOLOv7-tiny and MAH-CRNN+CTC terminal lines. First, the YOLOv7-tiny target detection model is improved by the introduction of the spatially invariant multi-attention mechanism (SimAM) and the weighted bidirectional feature pyramid network (BiFPN). This also improves the feature enhancements and feature fusion ability of the model, balances various scales of characteristic information, and increases the positioning accuracy of the text test box. Then, a multi-head attention hybrid (MAH) mechanism is implemented to optimize the convolutional recurrent neural network with connectionist temporal classification (CRNN+CTC) so that the model could learn data features with larger weights and increase the recognition accuracy of the model. The findings indicate that the enhanced YOLOv7-tiny model achieves 97.39%, 98.62%, and 95.07% of precision, recall, and mean average precision (mAP), respectively, on the detection dataset. The improved MAH-CRNN+CTC model achieves 91.2% character recognition accuracy in the recognition dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进的 YOLOv7-tiny 和 MAH-CRNN+CTC 模型的端子条检测和识别
针对变电站二次回路端子排接线效率低、不易进行故障检测与检查等多种问题,本研究提出了基于改进型 YOLOv7-tiny 和 MAH-CRNN+CTC 端子排的文本检测与识别模型。首先,通过引入空间不变多注意力机制(SimAM)和加权双向特征金字塔网络(BiFPN),改进了 YOLOv7-tiny 目标检测模型。这也提高了模型的特征增强和特征融合能力,平衡了各种尺度的特征信息,提高了文本测试框的定位精度。然后,采用多头注意力混合(MAH)机制来优化卷积递归神经网络与联结时态分类(CRNN+CTC),使模型能以更大的权重学习数据特征,提高模型的识别准确率。研究结果表明,增强型 YOLOv7-tiny 模型在检测数据集上的精确度、召回率和平均精确度(mAP)分别达到了 97.39%、98.62% 和 95.07%。改进的 MAH-CRNN+CTC 模型在识别数据集上达到了 91.2% 的字符识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and design for a storage liquid refrigerator considering the characteristics of energy storage batteries Transaction strategy of virtual power plants and multi-energy systems with multi-agent Stackelberg game based on integrated energy-carbon pricing The analysis of the threshold value of the complex short-circuit ratio index and its significance in the context of static voltage stability Overview of the PI (2DoF) algorithm in wind power system optimization and control A stochastic power flow-based static security assessment under uncertain scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1