{"title":"Porous Crystalline Organic Cages Made by Design","authors":"Dr. Svetlana Ivanova, Prof. Dr. Florian Beuerle","doi":"10.1002/ijch.202400025","DOIUrl":null,"url":null,"abstract":"<p>Shape-persistent organic cages are an intriguing class of molecular porous materials. Through hierarchical molecular design, size and shape of the intrinsic molecular voids are controlled by dynamic covalent chemistry, while pore structure and topology are governed by noncovalent alignment in the solid state. However, the predictable and reliable crystallization of organic cages is still challenging since long-range superstructures are solely based on weak and rather unidirectional supramolecular interactions. In this tutorial review, we provide a general classification of porous solid-state materials and discuss specific design principles regarding the dynamic covalent reactions, the small-molecule building blocks and solid-state engineering. Furthermore, we introduce the most important analytical techniques for porous materials with a special focus on organic cages.</p>","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"64 6-7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ijch.202400025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijch.202400025","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shape-persistent organic cages are an intriguing class of molecular porous materials. Through hierarchical molecular design, size and shape of the intrinsic molecular voids are controlled by dynamic covalent chemistry, while pore structure and topology are governed by noncovalent alignment in the solid state. However, the predictable and reliable crystallization of organic cages is still challenging since long-range superstructures are solely based on weak and rather unidirectional supramolecular interactions. In this tutorial review, we provide a general classification of porous solid-state materials and discuss specific design principles regarding the dynamic covalent reactions, the small-molecule building blocks and solid-state engineering. Furthermore, we introduce the most important analytical techniques for porous materials with a special focus on organic cages.
期刊介绍:
The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry.
The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH.
The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.