{"title":"Predicting Tool Wear with ParaCRN-AMResNet: A Hybrid Deep Learning Approach","authors":"Lian Guo, Yongguo Wang","doi":"10.3390/machines12050341","DOIUrl":null,"url":null,"abstract":"In the manufacturing sector, tool wear substantially affects product quality and production efficiency. While traditional sequential deep learning models can handle time-series tasks, their neglect of complex temporal relationships in time-series data often leads to errors accumulating in continuous predictions, which reduces their forecasting accuracy for tool wear. For addressing these limitations, the parallel convolutional and recurrent neural networks with attention-modulated residual learning (ParaCRN-AMResNet) model is introduced. Compared with conventional deep learning models, ParaCRN-AMResNet markedly enhances the efficiency and precision of feature extraction from time-series data through its innovative parallel architecture. The model adeptly combines dilated convolution neural network and bidirectional gated recurrent units, effectively addressing distance dependencies and enriching the quantity and dimensions of extracted features. The strength of ParaCRN-AMResNet lies in its refined ability to capture the complex dynamics of time-series data, significantly boosting the model’s accuracy and generalization capability. The model’s efficacy was validated through comprehensive milling experiments and vibration signal analyses, showcasing ParaCRN-AMResNet’s superior performance. In evaluation metrics, the model achieved a MAE of 2.6015, MSE of 15.1921, R2 of 0.9897, and MAPE of 2.7997%, conclusively proving its efficiency and accuracy in the precise prediction of tool wear.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"51 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12050341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the manufacturing sector, tool wear substantially affects product quality and production efficiency. While traditional sequential deep learning models can handle time-series tasks, their neglect of complex temporal relationships in time-series data often leads to errors accumulating in continuous predictions, which reduces their forecasting accuracy for tool wear. For addressing these limitations, the parallel convolutional and recurrent neural networks with attention-modulated residual learning (ParaCRN-AMResNet) model is introduced. Compared with conventional deep learning models, ParaCRN-AMResNet markedly enhances the efficiency and precision of feature extraction from time-series data through its innovative parallel architecture. The model adeptly combines dilated convolution neural network and bidirectional gated recurrent units, effectively addressing distance dependencies and enriching the quantity and dimensions of extracted features. The strength of ParaCRN-AMResNet lies in its refined ability to capture the complex dynamics of time-series data, significantly boosting the model’s accuracy and generalization capability. The model’s efficacy was validated through comprehensive milling experiments and vibration signal analyses, showcasing ParaCRN-AMResNet’s superior performance. In evaluation metrics, the model achieved a MAE of 2.6015, MSE of 15.1921, R2 of 0.9897, and MAPE of 2.7997%, conclusively proving its efficiency and accuracy in the precise prediction of tool wear.