Investigation of High-Speed Rubbing Behavior of GH4169 Superalloy with SiC/SiC Composites

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE Aerospace Pub Date : 2024-05-15 DOI:10.3390/aerospace11050397
Zhaoguo Mi, Kanghe Jiang, Yicheng Yang, Zhenhua Cheng, Weihua Yang, Zhigang Sun
{"title":"Investigation of High-Speed Rubbing Behavior of GH4169 Superalloy with SiC/SiC Composites","authors":"Zhaoguo Mi, Kanghe Jiang, Yicheng Yang, Zhenhua Cheng, Weihua Yang, Zhigang Sun","doi":"10.3390/aerospace11050397","DOIUrl":null,"url":null,"abstract":"The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC), ceramic matrix composite (CMC) and nickel-based superalloy GH4169 can be utilized in high-temperature applications due to their high-temperature performance. The SiC/SiC composites are commonly used in turbine outer rings, where they encounter friction and wear against the turbine blades. This high-speed rubbing occurs frequently in aircraft engines and steam turbines. To investigate the tribological behavior of these materials, rubbing experiments were conducted between the SiC/SiC and the GH4169 superalloy. The experiments involved varying the blade tip speeds ranging from 100 m/s to 350 m/s and incursion rates from 5 μm/s to 50 μm/s at room temperature. Additionally, experiments were conducted at high temperatures to compare the tribological behavior under ambient conditions. The results indicated that the GH4169 superalloy exhibited abrasive furrow wear during rubbing at both room temperature and high temperature. Furthermore, at elevated temperatures, some of the GH4169 superalloy adhered to the surface of the SiC/SiC. The analysis of the experiments conducted at ambient temperatures revealed that the friction coefficient increased with higher blade tip velocities (100~350 m/s). However, the coefficient was lower at high temperatures compared to room temperature. Furthermore, significant temperature increases were observed during rubbing at room temperature, whereas minimal temperature changes were detected on the rubbing surface at high temperatures.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050397","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The silicon carbide fiber-reinforced silicon carbide matrix (SiC/SiC), ceramic matrix composite (CMC) and nickel-based superalloy GH4169 can be utilized in high-temperature applications due to their high-temperature performance. The SiC/SiC composites are commonly used in turbine outer rings, where they encounter friction and wear against the turbine blades. This high-speed rubbing occurs frequently in aircraft engines and steam turbines. To investigate the tribological behavior of these materials, rubbing experiments were conducted between the SiC/SiC and the GH4169 superalloy. The experiments involved varying the blade tip speeds ranging from 100 m/s to 350 m/s and incursion rates from 5 μm/s to 50 μm/s at room temperature. Additionally, experiments were conducted at high temperatures to compare the tribological behavior under ambient conditions. The results indicated that the GH4169 superalloy exhibited abrasive furrow wear during rubbing at both room temperature and high temperature. Furthermore, at elevated temperatures, some of the GH4169 superalloy adhered to the surface of the SiC/SiC. The analysis of the experiments conducted at ambient temperatures revealed that the friction coefficient increased with higher blade tip velocities (100~350 m/s). However, the coefficient was lower at high temperatures compared to room temperature. Furthermore, significant temperature increases were observed during rubbing at room temperature, whereas minimal temperature changes were detected on the rubbing surface at high temperatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用碳化硅/碳化硅复合材料研究 GH4169 超合金的高速摩擦行为
碳化硅纤维增强碳化硅基复合材料(SiC/SiC)、陶瓷基复合材料(CMC)和镍基超合金 GH4169 具有高温性能,可用于高温应用领域。SiC/SiC 复合材料通常用于涡轮外环,因为它们会与涡轮叶片发生摩擦和磨损。这种高速摩擦经常发生在航空发动机和蒸汽轮机中。为了研究这些材料的摩擦学行为,我们在 SiC/SiC 和 GH4169 超级合金之间进行了摩擦实验。实验包括在室温下改变叶片尖端速度,从 100 米/秒到 350 米/秒不等,侵入率从 5 微米/秒到 50 微米/秒不等。此外,还在高温条件下进行了实验,以比较在环境条件下的摩擦学行为。结果表明,在室温和高温条件下,GH4169 超耐热合金在摩擦过程中都会出现磨沟磨损。此外,在高温条件下,部分 GH4169 超耐热合金附着在 SiC/SiC 表面。在常温下进行的实验分析表明,摩擦系数随着叶尖速度(100 至 350 米/秒)的提高而增大。然而,与室温相比,高温下的摩擦系数较低。此外,在室温下摩擦过程中观察到温度明显升高,而在高温下摩擦表面的温度变化极小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
期刊最新文献
On the Exploration of Temporal Fusion Transformers for Anomaly Detection with Multivariate Aviation Time-Series Data Assessment of Flyby Methods as Applied to Close Encounters among Asteroids A Multi-Objective Dynamic Mission-Scheduling Algorithm Considering Perturbations for Earth Observation Satellites Numerical Study on Far-Field Noise Characteristic Generated by Wall-Mounted Swept Finite-Span Airfoil within Transonic Flow Number of Blades’ Influence on the Performance of Rotor with Equal Solidity in Open and Shrouded Configurations: Experimental Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1