Tuning the Optical and Photoelectrochemical Properties of Epitaxial BiVO4 by Lattice Strain

Erwin N. Fernandez, R. van de Krol, F. Abdi
{"title":"Tuning the Optical and Photoelectrochemical Properties of Epitaxial BiVO4 by Lattice Strain","authors":"Erwin N. Fernandez, R. van de Krol, F. Abdi","doi":"10.1002/sstr.202400097","DOIUrl":null,"url":null,"abstract":"State‐of‐the‐art photoelectrodes in highly efficient photoelectrochemical (PEC) systems often comprise multilayer architectures where lattice mismatch‐imposed strain at the interfaces can perturb the material's crystalline lattice and electronic structure. Despite its inevitable presence, understanding of strain effects in semiconductor photoelectrodes is lacking, preventing rational exploitation of strain engineering to improve photoelectrode performance. In this work, we combine X‐ray structural characterization with strain tensor decomposition analysis as well as optical/photocurrent spectroscopic methods to demonstrate how volumetric lattice deformations caused by substrate‐imposed hydrostatic strain impact the optoelectronic and PEC properties of BiVO4. Utilizing single‐crystalline, epitaxial BiVO4/indium tin oxide (ITO)/yttrium‐stabilized zirconia (YSZx, x = 8% and 13% mol Y2O3) photoelectrodes as a model platform, we find that tensile hydrostatic strain that causes volumetric lattice dilation in BiVO4 results in slightly enhanced optical absorption, but it is detrimental to the internal quantum efficiencies in BiVO4. We attribute this to localization of photogenerated charge carriers, thereby leading to poor charge separation in the bulk of BiVO4 and increased recombination losses. Finally, we highlight the beneficial effects of compressive hydrostatic strain on enhancing the internal quantum efficiencies in BiVO4. Our results provide a basis for exploiting epitaxial strain engineering to optimize the performance of multilayer photoelectrodes in PEC systems.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State‐of‐the‐art photoelectrodes in highly efficient photoelectrochemical (PEC) systems often comprise multilayer architectures where lattice mismatch‐imposed strain at the interfaces can perturb the material's crystalline lattice and electronic structure. Despite its inevitable presence, understanding of strain effects in semiconductor photoelectrodes is lacking, preventing rational exploitation of strain engineering to improve photoelectrode performance. In this work, we combine X‐ray structural characterization with strain tensor decomposition analysis as well as optical/photocurrent spectroscopic methods to demonstrate how volumetric lattice deformations caused by substrate‐imposed hydrostatic strain impact the optoelectronic and PEC properties of BiVO4. Utilizing single‐crystalline, epitaxial BiVO4/indium tin oxide (ITO)/yttrium‐stabilized zirconia (YSZx, x = 8% and 13% mol Y2O3) photoelectrodes as a model platform, we find that tensile hydrostatic strain that causes volumetric lattice dilation in BiVO4 results in slightly enhanced optical absorption, but it is detrimental to the internal quantum efficiencies in BiVO4. We attribute this to localization of photogenerated charge carriers, thereby leading to poor charge separation in the bulk of BiVO4 and increased recombination losses. Finally, we highlight the beneficial effects of compressive hydrostatic strain on enhancing the internal quantum efficiencies in BiVO4. Our results provide a basis for exploiting epitaxial strain engineering to optimize the performance of multilayer photoelectrodes in PEC systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过晶格应变调节外延 BiVO4 的光学和光电化学特性
高效光电化学(PEC)系统中最先进的光电极通常由多层结构组成,在这种结构中,晶格错配在界面处产生的应变会扰乱材料的晶格和电子结构。尽管应变不可避免地存在,但人们对半导体光电极中的应变效应还缺乏了解,因此无法合理利用应变工程来提高光电极的性能。在这项工作中,我们将 X 射线结构表征与应变张量分解分析以及光学/光电流光谱方法相结合,证明了基底施加的静水应变引起的体积晶格变形如何影响 BiVO4 的光电和 PEC 性能。利用单晶、外延 BiVO4/铟锡氧化物(ITO)/钇稳定氧化锆(YSZx,x = 8% 和 13% mol Y2O3)光电极作为模型平台,我们发现拉伸静水应变会导致 BiVO4 的体积晶格扩张,从而使光吸收略有增强,但却不利于 BiVO4 的内部量子效率。我们将其归因于光生电荷载流子的局部化,从而导致 BiVO4 体积中电荷分离不良和重组损耗增加。最后,我们强调了压缩静水应变对提高 BiVO4 内部量子效率的有利影响。我们的研究结果为利用外延应变工程优化 PEC 系统中多层光电极的性能奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis Pressure-Enhanced Superconductivity and Structural Phase Transition in Layered Sn4P3 Unveiling Inequality of Atoms in Ultrasmall Pt Clusters: Oxygen Adsorption Limited to the Uppermost Atomic Layer Spatially Selective Ultraprecision Polishing and Cleaning by Collective Behavior of Micro Spinbots Inkjet-Printed Flexible and Transparent Ti3C2Tx/TiO2 Composite Films: A Strategy for Photoelectrically Controllable Photocatalytic Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1