The [18F]F-FDG PET/CT Radiomics Classifier of Histologic Subtypes and Anatomical Disease Origins across Various Malignancies: A Proof-of-Principle Study

Cancers Pub Date : 2024-05-15 DOI:10.3390/cancers16101873
R. Hinzpeter, S. A. Mirshahvalad, Vanessa Murad, Lisa Avery, R. Kulanthaivelu, A. Kohan, C. Ortega, E. Elimova, Jonathan Yeung, A. Hope, U. Metser, P. Veit-Haibach
{"title":"The [18F]F-FDG PET/CT Radiomics Classifier of Histologic Subtypes and Anatomical Disease Origins across Various Malignancies: A Proof-of-Principle Study","authors":"R. Hinzpeter, S. A. Mirshahvalad, Vanessa Murad, Lisa Avery, R. Kulanthaivelu, A. Kohan, C. Ortega, E. Elimova, Jonathan Yeung, A. Hope, U. Metser, P. Veit-Haibach","doi":"10.3390/cancers16101873","DOIUrl":null,"url":null,"abstract":"We aimed to investigate whether [18F]F-FDG-PET/CT-derived radiomics can classify histologic subtypes and determine the anatomical origin of various malignancies. In this IRB-approved retrospective study, 391 patients (age = 66.7 ± 11.2) with pulmonary (n = 142), gastroesophageal (n = 128) and head and neck (n = 121) malignancies were included. Image segmentation and feature extraction were performed semi-automatically. Two models (all possible subset regression [APS] and recursive partitioning) were employed to predict histology (squamous cell carcinoma [SCC; n = 219] vs. adenocarcinoma [AC; n = 172]), the anatomical origin, and histology plus anatomical origin. The recursive partitioning algorithm outperformed APS to determine histology (sensitivity 0.90 vs. 0.73; specificity 0.77 vs. 0.65). The recursive partitioning algorithm also revealed good predictive ability regarding anatomical origin. Particularly, pulmonary malignancies were identified with high accuracy (sensitivity 0.93; specificity 0.98). Finally, a model for the synchronous prediction of histology and anatomical disease origin resulted in high accuracy in determining gastroesophageal AC (sensitivity 0.88; specificity 0.92), pulmonary AC (sensitivity 0.89; specificity 0.88) and head and neck SCC (sensitivity 0.91; specificity 0.92). Adding PET-features was associated with marginal incremental value for both the prediction of histology and origin in the APS model. Overall, our study demonstrated a good predictive ability to determine patients’ histology and anatomical origin using [18F]F-FDG-PET/CT-derived radiomics features, mainly from CT.","PeriodicalId":504676,"journal":{"name":"Cancers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cancers16101873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aimed to investigate whether [18F]F-FDG-PET/CT-derived radiomics can classify histologic subtypes and determine the anatomical origin of various malignancies. In this IRB-approved retrospective study, 391 patients (age = 66.7 ± 11.2) with pulmonary (n = 142), gastroesophageal (n = 128) and head and neck (n = 121) malignancies were included. Image segmentation and feature extraction were performed semi-automatically. Two models (all possible subset regression [APS] and recursive partitioning) were employed to predict histology (squamous cell carcinoma [SCC; n = 219] vs. adenocarcinoma [AC; n = 172]), the anatomical origin, and histology plus anatomical origin. The recursive partitioning algorithm outperformed APS to determine histology (sensitivity 0.90 vs. 0.73; specificity 0.77 vs. 0.65). The recursive partitioning algorithm also revealed good predictive ability regarding anatomical origin. Particularly, pulmonary malignancies were identified with high accuracy (sensitivity 0.93; specificity 0.98). Finally, a model for the synchronous prediction of histology and anatomical disease origin resulted in high accuracy in determining gastroesophageal AC (sensitivity 0.88; specificity 0.92), pulmonary AC (sensitivity 0.89; specificity 0.88) and head and neck SCC (sensitivity 0.91; specificity 0.92). Adding PET-features was associated with marginal incremental value for both the prediction of histology and origin in the APS model. Overall, our study demonstrated a good predictive ability to determine patients’ histology and anatomical origin using [18F]F-FDG-PET/CT-derived radiomics features, mainly from CT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
各种恶性肿瘤组织学亚型和解剖学疾病起源的[18F]FDG PET/CT 放射组学分类器:原理验证研究
我们的目的是研究[18F]F-FDG-PET/CT衍生放射组学能否对组织学亚型进行分类,并确定各种恶性肿瘤的解剖起源。在这项经 IRB 批准的回顾性研究中,共纳入了 391 名肺部恶性肿瘤(142 人)、胃食管恶性肿瘤(128 人)和头颈部恶性肿瘤(121 人)患者(年龄 = 66.7 ± 11.2)。图像分割和特征提取均以半自动方式进行。采用两种模型(所有可能子集回归[APS]和递归分割)预测组织学(鳞状细胞癌[SCC;n = 219]与腺癌[AC;n = 172])、解剖起源和组织学加解剖起源。递归分区算法在确定组织学方面优于 APS(灵敏度为 0.90 vs. 0.73;特异度为 0.77 vs. 0.65)。递归分区算法对解剖学来源也有很好的预测能力。尤其是肺部恶性肿瘤的识别准确率很高(灵敏度为 0.93;特异性为 0.98)。最后,组织学和解剖学疾病起源同步预测模型在确定胃食管癌(灵敏度 0.88;特异度 0.92)、肺癌(灵敏度 0.89;特异度 0.88)和头颈部 SCC(灵敏度 0.91;特异度 0.92)方面具有很高的准确性。在APS模型中,增加PET特征对组织学和起源的预测均有边际递增价值。总之,我们的研究表明,利用[18F]FDG-PET/CT衍生的放射组学特征(主要来自CT)来确定患者的组织学和解剖起源具有良好的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aurora Kinase A Inhibition Potentiates Platinum and Radiation Cytotoxicity in Non-Small-Cell Lung Cancer Cells and Induces Expression of Alternative Immune Checkpoints Development and Characterization of Syngeneic Orthotopic Transplant Models of Obesity-Responsive Triple-Negative Breast Cancer in C57BL/6J Mice The Effects of Gynecological Tumor Irradiation on the Immune System A Monocentric Analysis of Implantable Ports in Cancer Treatment: Five-Year Efficacy and Safety Evaluation Drug Combination Nanoparticles Containing Gemcitabine and Paclitaxel Enable Orthotopic 4T1 Breast Tumor Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1