A Cost of Misclassification Adjustment Approach for Estimating Optimal Cut-Off Point for Classification

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-15 DOI:10.1155/2024/8082372
O.-A. Ampomah, R. Minkah, G. Kallah-Dagadu, E. N. N. Nortey
{"title":"A Cost of Misclassification Adjustment Approach for Estimating Optimal Cut-Off Point for Classification","authors":"O.-A. Ampomah, R. Minkah, G. Kallah-Dagadu, E. N. N. Nortey","doi":"10.1155/2024/8082372","DOIUrl":null,"url":null,"abstract":"Classification is one of the main areas of machine learning, where the target variable is usually categorical with at least two levels. This study focuses on deducing an optimal cut-off point for continuous outcomes (e.g., predicted probabilities) resulting from binary classifiers. To achieve this aim, the study modified univariate discriminant functions by incorporating the error cost of misclassification penalties involved. By doing so, we can systematically shift the cut-off point within its measurement range till the optimal point is obtained. Extensive simulation studies were conducted to investigate the performance of the proposed method in comparison with existing classification methods under the binary logistic and Bayesian quantile regression frameworks. The simulation results indicate that logistic regression models incorporating the proposed method outperform the existing ordinary logistic regression and Bayesian regression models. We illustrate the proposed method with a practical dataset from the finance industry that assesses default status in home equity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/8082372","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Classification is one of the main areas of machine learning, where the target variable is usually categorical with at least two levels. This study focuses on deducing an optimal cut-off point for continuous outcomes (e.g., predicted probabilities) resulting from binary classifiers. To achieve this aim, the study modified univariate discriminant functions by incorporating the error cost of misclassification penalties involved. By doing so, we can systematically shift the cut-off point within its measurement range till the optimal point is obtained. Extensive simulation studies were conducted to investigate the performance of the proposed method in comparison with existing classification methods under the binary logistic and Bayesian quantile regression frameworks. The simulation results indicate that logistic regression models incorporating the proposed method outperform the existing ordinary logistic regression and Bayesian regression models. We illustrate the proposed method with a practical dataset from the finance industry that assesses default status in home equity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估算最佳分类临界点的误分类成本调整方法
分类是机器学习的主要领域之一,其目标变量通常是至少有两个等级的分类变量。本研究的重点是为二元分类器产生的连续结果(如预测概率)推导出一个最佳分界点。为实现这一目标,本研究修改了单变量判别函数,将误判惩罚的误差成本纳入其中。这样,我们就能在测量范围内系统地移动分界点,直到获得最佳点。在二元逻辑回归和贝叶斯量子回归框架下,我们进行了广泛的模拟研究,以考察拟议方法与现有分类方法的性能对比。仿真结果表明,采用所提方法的逻辑回归模型优于现有的普通逻辑回归模型和贝叶斯回归模型。我们用金融业的一个实际数据集来说明所提出的方法,该数据集用于评估房屋净值的违约状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Psychosexual dysfunction in male patients with cannabis dependence and synthetic cannabinoid dependence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1