{"title":"A deep learning-based multivariate decomposition and ensemble framework for container throughput forecasting","authors":"Anurag Kulshrestha, Abhishek Yadav, Himanshu Sharma, Shikha Suman","doi":"10.1002/for.3151","DOIUrl":null,"url":null,"abstract":"<p>Traditional linear models struggle to capture the intricate relationship between dynamic container throughput and its complex interplay with economic fluctuations. This study introduces a novel, deep learning-based multivariate framework for precision in demanding landscapes. The framework consistently outperforms eight established benchmark models by employing vital economic indicators like GDP and port tonnage, identified through rigorous predictor importance analysis of an initial set of four variables, including imports and exports. Statistical significance is demonstrably achieved through the Diebold–Mariano and Wilcoxon rank-sum tests. Utilizing the Port of Singapore as a case study, the framework offers agile adaptability for the ever-evolving global supply chain. Comprehensive analyses ensure robustness, decoding intricate throughput dynamics. Incorporating noise-assisted multivariate empirical mode decomposition (NA-MEMD) for nonlinear decomposition and bidirectional long short-term memory (BiLSTM) for time series dependencies, this innovative approach holds promise for revolutionizing container throughput forecasting and enhancing competitiveness in the global market through optimized resource allocation and streamlined operations.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 7","pages":"2685-2704"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3151","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional linear models struggle to capture the intricate relationship between dynamic container throughput and its complex interplay with economic fluctuations. This study introduces a novel, deep learning-based multivariate framework for precision in demanding landscapes. The framework consistently outperforms eight established benchmark models by employing vital economic indicators like GDP and port tonnage, identified through rigorous predictor importance analysis of an initial set of four variables, including imports and exports. Statistical significance is demonstrably achieved through the Diebold–Mariano and Wilcoxon rank-sum tests. Utilizing the Port of Singapore as a case study, the framework offers agile adaptability for the ever-evolving global supply chain. Comprehensive analyses ensure robustness, decoding intricate throughput dynamics. Incorporating noise-assisted multivariate empirical mode decomposition (NA-MEMD) for nonlinear decomposition and bidirectional long short-term memory (BiLSTM) for time series dependencies, this innovative approach holds promise for revolutionizing container throughput forecasting and enhancing competitiveness in the global market through optimized resource allocation and streamlined operations.
期刊介绍:
The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.