Development of Ni-Mn-Ga Enabled Micropumps for Hybrid Microdevices in Microelectromechanical Systems

Hao Hu, Huihuang Jiang, Dong Hui Guo, Kari Ullakko
{"title":"Development of Ni-Mn-Ga Enabled Micropumps for Hybrid Microdevices in Microelectromechanical Systems","authors":"Hao Hu, Huihuang Jiang, Dong Hui Guo, Kari Ullakko","doi":"10.4028/p-5tcoml","DOIUrl":null,"url":null,"abstract":"This study selects a single crystalline Ni-Mn-Ga alloy by its exceptional actuator attributes, high actuation speed, precise position control, rapid response to external magnetic fields, and extended operational lifespan. Researchers venture into uncharted territory, aiming to harness the potential of Ni-Mn-Ga alloy to revolutionize micropump performance and refine fluid manipulation within miniature devices. The methodology at the heart of this endeavor involves the seamless integration of this specialized alloy with microdevice technology, giving rise to a set of unique pump components that substantially boost pump efficiency. Crucially, Ni-Mn-Ga is the chosen material for the active part of the micropump. At the same time, MEMS fabrication handles the passive elements, all facilitated by the 0.18 µm semiconductor technology and Sivalco TCAD simulation software. Computational simulations validate the alloy's suitability, impressively achieving an accumulated flow volume of 0.15 x 10e-4 µL in 10 microseconds. Beyond its scientific significance, this research bridges MEMS technology and magnetic-enabled smart materials, showcasing the remarkable capabilities of Ni-Mn-Ga alloy in significantly enhancing micropump performance. These innovative solutions promise to open doors to groundbreaking applications in microfluidic systems across many scientific and industrial domains.","PeriodicalId":507685,"journal":{"name":"Key Engineering Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Key Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-5tcoml","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study selects a single crystalline Ni-Mn-Ga alloy by its exceptional actuator attributes, high actuation speed, precise position control, rapid response to external magnetic fields, and extended operational lifespan. Researchers venture into uncharted territory, aiming to harness the potential of Ni-Mn-Ga alloy to revolutionize micropump performance and refine fluid manipulation within miniature devices. The methodology at the heart of this endeavor involves the seamless integration of this specialized alloy with microdevice technology, giving rise to a set of unique pump components that substantially boost pump efficiency. Crucially, Ni-Mn-Ga is the chosen material for the active part of the micropump. At the same time, MEMS fabrication handles the passive elements, all facilitated by the 0.18 µm semiconductor technology and Sivalco TCAD simulation software. Computational simulations validate the alloy's suitability, impressively achieving an accumulated flow volume of 0.15 x 10e-4 µL in 10 microseconds. Beyond its scientific significance, this research bridges MEMS technology and magnetic-enabled smart materials, showcasing the remarkable capabilities of Ni-Mn-Ga alloy in significantly enhancing micropump performance. These innovative solutions promise to open doors to groundbreaking applications in microfluidic systems across many scientific and industrial domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发用于微机电系统中混合微型器件的镍锰镓微泵
这项研究选择了单晶镍锰镓合金,因为它具有卓越的致动器特性、高致动速度、精确的位置控制、对外部磁场的快速响应以及更长的工作寿命。研究人员勇闯未知领域,旨在利用镍锰镓合金的潜力,彻底改变微型泵的性能,完善微型设备中的流体操纵。这项工作的核心方法是将这种特殊合金与微型设备技术无缝集成,从而产生一套独特的泵组件,大幅提高泵的效率。最重要的是,镍锰镓合金被选为微型泵有源部分的材料。与此同时,MEMS 制造工艺处理无源元件,所有这些都得益于 0.18 µm 半导体技术和西瓦尔科 TCAD 仿真软件。计算模拟验证了合金的适用性,在 10 微秒内实现了 0.15 x 10e-4 µL 的累积流量,令人印象深刻。除了科学意义之外,这项研究还在微机电系统技术和磁性智能材料之间架起了一座桥梁,展示了镍锰镓合金在显著提高微型泵性能方面的卓越能力。这些创新解决方案有望为微流控系统在许多科学和工业领域的突破性应用打开大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the Inter-Building Effect on Energy Saving Potential of Radiative Cooling Materials Microstructural Characterization, Mechanical Performance, and Anti-Corrosive Response of Zinc Multifaceted Coating on Mild Steel Comparative Review of Mechanical Properties of Rice Straw and RiceHusk Fiber Reinforced Polymer Composite Thermal Cycle Simulation of Heat Affected Zone in the Welded Mild Steel Determining the Properties of Unfired Stabilized Kaolinitic Clay Brick for Sustainable Construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1