A novel performance adaptation method for aero-engine matching over a wide operating range

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of the Global Power and Propulsion Society Pub Date : 2024-05-14 DOI:10.33737/jgpps/186055
Ye Wang, Zepeng Wang, Xizhen Wang, Bokun Zhao, Yongjun Zhao
{"title":"A novel performance adaptation method for aero-engine matching over a wide operating range","authors":"Ye Wang, Zepeng Wang, Xizhen Wang, Bokun Zhao, Yongjun Zhao","doi":"10.33737/jgpps/186055","DOIUrl":null,"url":null,"abstract":"High-fidelity performance modelling is crucial for the development of aero-engine digital twin technology. The accuracy of component-level models heavily relies on the precision of characteristic maps, and inaccuracies in these maps can cause significant deviations between predicted and actual engine performance. A novel method of aero-engine performance adaptation based on adaptation factor surfaces is proposed, which aims to provide a performance matching method for aero-engines over a wide operating range. To improve the convergence and stability of the solution, a hybrid algorithm is proposed that fuses model and measured data to calculate the adaptation factor at the operating points. The modification of the characteristic maps is achieved in both directions by means of adaptation factor surfaces. The method is validated by simulating two engines with distinct maps, and the results show that the method significantly improves the model accuracy at the component level under widely varying operating conditions, taking into account the multidimensional aspects of the maps and the differences between the real engine and the model. The proposed approach has the potential to improve the accuracy and efficiency of digital twin technology for aero-engines.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/186055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-fidelity performance modelling is crucial for the development of aero-engine digital twin technology. The accuracy of component-level models heavily relies on the precision of characteristic maps, and inaccuracies in these maps can cause significant deviations between predicted and actual engine performance. A novel method of aero-engine performance adaptation based on adaptation factor surfaces is proposed, which aims to provide a performance matching method for aero-engines over a wide operating range. To improve the convergence and stability of the solution, a hybrid algorithm is proposed that fuses model and measured data to calculate the adaptation factor at the operating points. The modification of the characteristic maps is achieved in both directions by means of adaptation factor surfaces. The method is validated by simulating two engines with distinct maps, and the results show that the method significantly improves the model accuracy at the component level under widely varying operating conditions, taking into account the multidimensional aspects of the maps and the differences between the real engine and the model. The proposed approach has the potential to improve the accuracy and efficiency of digital twin technology for aero-engines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于宽工作范围内航空发动机匹配的新型性能适应方法
高保真性能建模对于航空发动机数字孪生技术的发展至关重要。部件级模型的精度在很大程度上依赖于特性图的精度,而特性图的不准确会导致发动机的预测性能与实际性能之间出现显著偏差。本文提出了一种基于适应因子曲面的新型航空发动机性能适应方法,旨在为航空发动机提供一种在宽工作范围内的性能匹配方法。为了提高求解的收敛性和稳定性,提出了一种混合算法,该算法融合模型和测量数据来计算工作点的适应因子。通过适应因子曲面,在两个方向上实现了对特征图的修改。通过模拟两台具有不同特征图的发动机对该方法进行了验证,结果表明,考虑到特征图的多维性以及实际发动机与模型之间的差异,该方法显著提高了在千差万别的工作条件下部件级模型的准确性。所提出的方法有望提高航空发动机数字孪生技术的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
期刊最新文献
Thermodynamic performance study of simplified precooled engine cycle with coupling power output Direct multi-fidelity integration of 3D CFD models in a gas turbine with numerical zooming method A novel performance adaptation method for aero-engine matching over a wide operating range Swirling flow field reconstruction and cooling performance analysis based on experimental observations using physics-informed neural networks Flow physics during durge of an axial-centrifugal compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1