Bending Properties of Cold-Formed Thin-Walled Steel/Fast-Growing Timber Composite I-Beams

IF 2.4 2区 农林科学 Q1 FORESTRY Forests Pub Date : 2024-05-14 DOI:10.3390/f15050857
Tianshu Chen, Zhihua Chen, Jiadi Liu, Anling Zhang
{"title":"Bending Properties of Cold-Formed Thin-Walled Steel/Fast-Growing Timber Composite I-Beams","authors":"Tianshu Chen, Zhihua Chen, Jiadi Liu, Anling Zhang","doi":"10.3390/f15050857","DOIUrl":null,"url":null,"abstract":"A cold-formed, thin-walled steel/fast-growing timber composite system has recently been presented for low-rise buildings. It aims to increase the use of fast-growing wood as a green building material in structures, thus contributing to the transformation of traditional buildings. This study proposed a composite I-beam combined with fast-growing radiata pine and cold-formed thin-walled U-shaped steel. A four-point bending test was used to measure the bending properties of steel–timber composite I-beams under various connection methods. Based on experimental results, this study examined the specimen’s failure mechanism, mechanical properties, and strain development. In addition, a method for calculating flexural bearing capacity based on the superposition principle and transformed section method was suggested. It is evident from the results that fast-growing timber and cold-formed thin-walled steel can have significant composite effects. Different connecting methods significantly impact beams’ failure mode, stiffness, and bearing capacity. Furthermore, the theoretical method for calculating the flexural bearing capacity of composite beams differs from the test value by less than 10%. This paper’s research encourages the applications of fast-growing wood as light residential components, and it serves as a reference for the development, production, and engineering of steel–timber composite structural systems.","PeriodicalId":12339,"journal":{"name":"Forests","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15050857","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

A cold-formed, thin-walled steel/fast-growing timber composite system has recently been presented for low-rise buildings. It aims to increase the use of fast-growing wood as a green building material in structures, thus contributing to the transformation of traditional buildings. This study proposed a composite I-beam combined with fast-growing radiata pine and cold-formed thin-walled U-shaped steel. A four-point bending test was used to measure the bending properties of steel–timber composite I-beams under various connection methods. Based on experimental results, this study examined the specimen’s failure mechanism, mechanical properties, and strain development. In addition, a method for calculating flexural bearing capacity based on the superposition principle and transformed section method was suggested. It is evident from the results that fast-growing timber and cold-formed thin-walled steel can have significant composite effects. Different connecting methods significantly impact beams’ failure mode, stiffness, and bearing capacity. Furthermore, the theoretical method for calculating the flexural bearing capacity of composite beams differs from the test value by less than 10%. This paper’s research encourages the applications of fast-growing wood as light residential components, and it serves as a reference for the development, production, and engineering of steel–timber composite structural systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷弯薄壁型钢/速生木材复合工字钢的弯曲性能
最近推出了一种用于低层建筑的冷弯薄壁钢/速生木材复合系统。该系统旨在增加速生木材作为绿色建材在建筑结构中的使用,从而促进传统建筑的转型。本研究提出了一种由速生辐射松和冷弯薄壁 U 型钢组合而成的复合工字梁。采用四点弯曲试验测量了钢-木材复合工字梁在不同连接方法下的弯曲性能。根据实验结果,本研究探讨了试样的破坏机制、机械性能和应变发展。此外,还提出了一种基于叠加原理和变换截面法的抗弯承载力计算方法。研究结果表明,速生材和冷弯薄壁型钢具有显著的复合效应。不同的连接方法会对梁的破坏模式、刚度和承载力产生重大影响。此外,计算复合梁抗弯承载力的理论方法与测试值相差不到 10%。本文的研究促进了速生木材作为轻型住宅构件的应用,并为钢木复合结构系统的开发、生产和工程设计提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forests
Forests FORESTRY-
CiteScore
4.40
自引率
17.20%
发文量
1823
审稿时长
19.02 days
期刊介绍: Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
The Impact of the Governance Fragmentation of Forestry Communities on the Economic Performance of State-Owned Forest Enterprises in Northeast China: An Empirical Analysis Based on the Transaction Cost Perspective Soybean Meal–Oxidized Lignin as Bio-Hybridized Wood Panel Adhesives with Increased Water Resistance The Added Value of Urban Trees (Tilia tomentosa Moench, Fraxinus excelsior L. and Pinus nigra J.F. Arnold) in Terms of Air Pollutant Removal Predicting the Potential Distribution of Quercus oxyphylla in China under Climate Change Scenarios Topographic Variation in Ecosystem Multifunctionality in an Old-Growth Subtropical Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1