{"title":"Interpolation of Environmental Data Using Deep Learning and Model Inference","authors":"C. Ibebuchi, Itohan-Osa Abu","doi":"10.1088/2632-2153/ad4b94","DOIUrl":null,"url":null,"abstract":"\n The temporal resolution of environmental data sets plays a major role in the granularity of the information that can be derived from the data. In most cases, it is required that different data sets have a common temporal resolution to enable their consistent evaluations and applications in making informed decisions. This study leverages deep learning with long short-term memory (LSTM) neural networks and model inference to enhance the temporal resolution of climate datasets, specifically temperature, and precipitation, from daily to sub-daily scales. We trained our model to learn the relationship between daily and sub-daily data, subsequently applying this knowledge to increase the resolution of a separate dataset with a coarser (daily) temporal resolution. Our findings reveal a high degree of accuracy for temperature predictions, evidenced by a correlation of 0.99 and a mean absolute error of 0.21 °C, between the actual and predicted sub-daily values. In contrast, the approach was less effective for precipitation, achieving an explained variance of only 37%, compared to 98% for temperature. Further, besides the sub-daily interpolation of the climate data sets, we adapted our approach to increase the resolution of the Normalized difference vegetation index of Landsat (from 16-day to 5-day interval) using the LSTM model pre-trained from the Sentinel 2 Normalized difference vegetation index - that exists at a relatively higher temporal resolution. The explained variance between the predicted Landsat and Sentinel 1 data is 70% with a mean absolute error of 0.03. These results suggest that our method is particularly suitable for environmental datasets with less pronounced short-term variability, offering a promising tool for improving the resolution and utility of the data.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"12 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad4b94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The temporal resolution of environmental data sets plays a major role in the granularity of the information that can be derived from the data. In most cases, it is required that different data sets have a common temporal resolution to enable their consistent evaluations and applications in making informed decisions. This study leverages deep learning with long short-term memory (LSTM) neural networks and model inference to enhance the temporal resolution of climate datasets, specifically temperature, and precipitation, from daily to sub-daily scales. We trained our model to learn the relationship between daily and sub-daily data, subsequently applying this knowledge to increase the resolution of a separate dataset with a coarser (daily) temporal resolution. Our findings reveal a high degree of accuracy for temperature predictions, evidenced by a correlation of 0.99 and a mean absolute error of 0.21 °C, between the actual and predicted sub-daily values. In contrast, the approach was less effective for precipitation, achieving an explained variance of only 37%, compared to 98% for temperature. Further, besides the sub-daily interpolation of the climate data sets, we adapted our approach to increase the resolution of the Normalized difference vegetation index of Landsat (from 16-day to 5-day interval) using the LSTM model pre-trained from the Sentinel 2 Normalized difference vegetation index - that exists at a relatively higher temporal resolution. The explained variance between the predicted Landsat and Sentinel 1 data is 70% with a mean absolute error of 0.03. These results suggest that our method is particularly suitable for environmental datasets with less pronounced short-term variability, offering a promising tool for improving the resolution and utility of the data.