{"title":"Blockchain and Smart Contracts for Digital Copyright Protection","authors":"Franco Frattolillo","doi":"10.3390/fi16050169","DOIUrl":null,"url":null,"abstract":"In a global context characterized by a pressing need to find a solution to the problem of digital copyright protection, buyer-seller watermarking protocols based on asymmetric fingerprinting and adopting a “buyer-friendly” approach have proven effective in addressing such a problem. They can ensure high levels of usability and security. However, they usually resort to trusted third parties (TTPs) to guarantee the protection process, and this is often perceived as a relevant drawback since TTPs may cause conspiracy or collusion problems, besides the fact that they are generally considered as some sort of “big brother”. This paper presents a buyer-seller watermarking protocol that can achieve the right compromise between usability and security without employing a TTP. The protocol is built around previous experiences conducted in the field of protocols based on the buyer-friendly approach. Its peculiarity consists of exploiting smart contracts executed within a blockchain to implement preset and immutable rules that run automatically under specific conditions without control from some kind of central authority. The result is a simple, usable, and secure watermarking protocol able to do without TTPs.","PeriodicalId":37982,"journal":{"name":"Future Internet","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fi16050169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In a global context characterized by a pressing need to find a solution to the problem of digital copyright protection, buyer-seller watermarking protocols based on asymmetric fingerprinting and adopting a “buyer-friendly” approach have proven effective in addressing such a problem. They can ensure high levels of usability and security. However, they usually resort to trusted third parties (TTPs) to guarantee the protection process, and this is often perceived as a relevant drawback since TTPs may cause conspiracy or collusion problems, besides the fact that they are generally considered as some sort of “big brother”. This paper presents a buyer-seller watermarking protocol that can achieve the right compromise between usability and security without employing a TTP. The protocol is built around previous experiences conducted in the field of protocols based on the buyer-friendly approach. Its peculiarity consists of exploiting smart contracts executed within a blockchain to implement preset and immutable rules that run automatically under specific conditions without control from some kind of central authority. The result is a simple, usable, and secure watermarking protocol able to do without TTPs.
Future InternetComputer Science-Computer Networks and Communications
CiteScore
7.10
自引率
5.90%
发文量
303
审稿时长
11 weeks
期刊介绍:
Future Internet is a scholarly open access journal which provides an advanced forum for science and research concerned with evolution of Internet technologies and related smart systems for “Net-Living” development. The general reference subject is therefore the evolution towards the future internet ecosystem, which is feeding a continuous, intensive, artificial transformation of the lived environment, for a widespread and significant improvement of well-being in all spheres of human life (private, public, professional). Included topics are: • advanced communications network infrastructures • evolution of internet basic services • internet of things • netted peripheral sensors • industrial internet • centralized and distributed data centers • embedded computing • cloud computing • software defined network functions and network virtualization • cloud-let and fog-computing • big data, open data and analytical tools • cyber-physical systems • network and distributed operating systems • web services • semantic structures and related software tools • artificial and augmented intelligence • augmented reality • system interoperability and flexible service composition • smart mission-critical system architectures • smart terminals and applications • pro-sumer tools for application design and development • cyber security compliance • privacy compliance • reliability compliance • dependability compliance • accountability compliance • trust compliance • technical quality of basic services.