Low-intensity continuous ultrasound effect on proliferation and morphology of fibroblast cells

iRadiology Pub Date : 2024-05-13 DOI:10.1002/ird3.75
Tu Minh Tran Vo, Guillermo Ignacio Guangorena Zarzosa, Keita Nakajima, Takaomi Kobayashi
{"title":"Low-intensity continuous ultrasound effect on proliferation and morphology of fibroblast cells","authors":"Tu Minh Tran Vo,&nbsp;Guillermo Ignacio Guangorena Zarzosa,&nbsp;Keita Nakajima,&nbsp;Takaomi Kobayashi","doi":"10.1002/ird3.75","DOIUrl":null,"url":null,"abstract":"<p>Recently, the use of ultrasound (US) for triggering drug release to specific tissues was explored, but its direct effects on cells have not been thoroughly understood. For this reason, this study aimed to investigate the impact of US powers and US irradiation times on fibroblast cells (NIH-3T3). The results showed that the diverse US settings had varying effects on cell proliferation and distribution in the polystyrene culture dish. Interestingly, at 10 W, 43 kHz with changing exposed time up to 30 min either stimulated or inhibited fibroblast cell growth after 24 and 72 h of cultivation compared to the control sample in the absence of US, while longer US exposure time led to a moderate reduction in cell quantity. Moreover, higher US levels of 20 and 30 W could cause an aggregation of cells and sublethal damage to the cells. Importantly, the morphology of fibroblast was changed from stellate-shape to round-shape under greater US powers. Elevated US power also influenced interactions between proteins and lipids, affecting the atomic and molecular charges, leading to changes in both zeta potential and pH of the dispensed cell solution.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 3","pages":"318-327"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.75","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iRadiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird3.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the use of ultrasound (US) for triggering drug release to specific tissues was explored, but its direct effects on cells have not been thoroughly understood. For this reason, this study aimed to investigate the impact of US powers and US irradiation times on fibroblast cells (NIH-3T3). The results showed that the diverse US settings had varying effects on cell proliferation and distribution in the polystyrene culture dish. Interestingly, at 10 W, 43 kHz with changing exposed time up to 30 min either stimulated or inhibited fibroblast cell growth after 24 and 72 h of cultivation compared to the control sample in the absence of US, while longer US exposure time led to a moderate reduction in cell quantity. Moreover, higher US levels of 20 and 30 W could cause an aggregation of cells and sublethal damage to the cells. Importantly, the morphology of fibroblast was changed from stellate-shape to round-shape under greater US powers. Elevated US power also influenced interactions between proteins and lipids, affecting the atomic and molecular charges, leading to changes in both zeta potential and pH of the dispensed cell solution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低强度连续超声波对成纤维细胞增殖和形态的影响
最近,人们探索了利用超声波(US)触发药物释放到特定组织的方法,但对其对细胞的直接影响还没有深入了解。因此,本研究旨在探讨 US 功率和 US 照射时间对成纤维细胞(NIH-3T3)的影响。结果显示,不同的 US 设置对聚苯乙烯培养皿中细胞的增殖和分布有不同的影响。有趣的是,与无 US 的对照样品相比,在 10 W、43 kHz 的条件下,暴露时间最长为 30 分钟,在培养 24 小时和 72 小时后,可刺激或抑制成纤维细胞的生长,而更长的 US 暴露时间会导致细胞数量的适度减少。此外,20 瓦和 30 瓦的较高 US 可导致细胞聚集,对细胞造成亚致死性损伤。重要的是,在更高的 US 功率下,成纤维细胞的形态从星状变为圆形。较高的 US 功率还会影响蛋白质和脂质之间的相互作用,影响原子和分子电荷,从而导致分配细胞溶液的 zeta 电位和 pH 值发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information An unusual large mass of sclerosing angiomatoid nodular transformation Exploring the feasibility of integrating ultra-high field magnetic resonance imaging neuroimaging with multimodal artificial intelligence for clinical diagnostics Three-dimensional time of flight magnetic resonance angiography at 5.0T: Visualization of the superior cerebellar artery Ultra-high field magnetic resonance imaging in theranostics of mental disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1