High-temperature annealing improves Pt utilization of proton exchange membrane fuel cell cathode catalysts

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Science China Materials Pub Date : 2024-05-13 DOI:10.1007/s40843-024-2871-1
Junjie Li  (, ), Zirui Li  (, ), Shuai Li  (, ), Cong Xu  (, ), Ang Li  (, ), Lei Tong  (, ), Haiwei Liang  (, )
{"title":"High-temperature annealing improves Pt utilization of proton exchange membrane fuel cell cathode catalysts","authors":"Junjie Li \n (,&nbsp;),&nbsp;Zirui Li \n (,&nbsp;),&nbsp;Shuai Li \n (,&nbsp;),&nbsp;Cong Xu \n (,&nbsp;),&nbsp;Ang Li \n (,&nbsp;),&nbsp;Lei Tong \n (,&nbsp;),&nbsp;Haiwei Liang \n (,&nbsp;)","doi":"10.1007/s40843-024-2871-1","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature annealing is widely recognized as an effective way to improve the durability of Pt/C cathode catalysts used in proton exchange membrane fuel cells (PEMFCs), yet systematic studies on its effects on PEMFC performance are still lacking. Herein, we explore the effect of high-temperature annealing on the PEMFC performance, based on a thorough comparative analysis of Pt/C catalysts annealed at temperatures ranging from 500–900°C. Our results reveal that high-temperature annealing not only enhances the catalyst durability but also substantially increases Pt utilization, which in turn drives the increase in mass activity and the enhancement of low-current-density performance. Based on an array of electrochemical and physical characterization results, we infer that the increased utilization of Pt might stem from nanoparticle migration induced by high-temperature annealing, leading to closer proximity between Pt nanoparticles and ionomers. This reduced distance potentially enhances the accessibility of protons to the Pt nanoparticles, thereby improving the Pt utilization.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"67 6","pages":"1851 - 1857"},"PeriodicalIF":7.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-2871-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature annealing is widely recognized as an effective way to improve the durability of Pt/C cathode catalysts used in proton exchange membrane fuel cells (PEMFCs), yet systematic studies on its effects on PEMFC performance are still lacking. Herein, we explore the effect of high-temperature annealing on the PEMFC performance, based on a thorough comparative analysis of Pt/C catalysts annealed at temperatures ranging from 500–900°C. Our results reveal that high-temperature annealing not only enhances the catalyst durability but also substantially increases Pt utilization, which in turn drives the increase in mass activity and the enhancement of low-current-density performance. Based on an array of electrochemical and physical characterization results, we infer that the increased utilization of Pt might stem from nanoparticle migration induced by high-temperature annealing, leading to closer proximity between Pt nanoparticles and ionomers. This reduced distance potentially enhances the accessibility of protons to the Pt nanoparticles, thereby improving the Pt utilization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温退火提升质子交换膜燃料电池阴极催化剂的铂 利用率
高温退火被公认为是提高质子交换膜燃料电池(PEMFC)中使用的铂/镍阴极催化剂耐久性的有效方法,但目前仍缺乏有关高温退火对 PEMFC 性能影响的系统研究。在此,我们基于对在 500-900°C 温度下退火的 Pt/C 催化剂的全面比较分析,探讨了高温退火对 PEMFC 性能的影响。我们的研究结果表明,高温退火不仅能提高催化剂的耐久性,还能大幅提高铂的利用率,进而推动质量活性的提高和低电流密度性能的增强。根据一系列电化学和物理表征结果,我们推断铂利用率的提高可能源于高温退火引起的纳米粒子迁移,导致铂纳米粒子和离子体之间的距离更近。距离的缩短可能会提高质子与铂纳米粒子的接触机会,从而提高铂的利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
期刊最新文献
Towards chlorine-tolerant seawater electrolysis: anode electrocatalysts, electrolyte, and system design strategies Exciton tuning and charge steering in donor-acceptor covalent triazine frameworks toward boosted photocatalytic oxidation Electrospun MOFs-based nanofibrous membranes for water and air purification: a review Enhanced hydrogen spillover effect in low-temperature ammonia decomposition via N-coordination and O-vacancy-activated Co/LaxCe1−xAlO3−yNz catalyst Metal-organic frameworks as functional materials for biomedicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1