UWB-enabled Sensing for Fast and Effortless Blood Pressure Monitoring

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-05-13 DOI:10.1145/3659617
Zhi Wang, Beihong Jin, Fusang Zhang, Siheng Li, Junqi Ma
{"title":"UWB-enabled Sensing for Fast and Effortless Blood Pressure Monitoring","authors":"Zhi Wang, Beihong Jin, Fusang Zhang, Siheng Li, Junqi Ma","doi":"10.1145/3659617","DOIUrl":null,"url":null,"abstract":"Blood Pressure (BP) is a critical vital sign to assess cardiovascular health. However, existing cuff-based and wearable-based BP measurement methods require direct contact between the user's skin and the device, resulting in poor user experience and limited engagement for regular daily monitoring of BP. In this paper, we propose a contactless approach using Ultra-WideBand (UWB) signals for regular daily BP monitoring. To remove components of the received signals that are not related to the pulse waves, we propose two methods that utilize peak detection and principal component analysis to identify aliased and deformed parts. Furthermore, to extract BP-related features and improve the accuracy of BP prediction, particularly for hypertensive users, we construct a deep learning model that extracts features of pulse waves at different scales and identifies the different effects of features on BP. We build the corresponding BP monitoring system named RF-BP and conduct extensive experiments on both a public dataset and a self-built dataset. The experimental results show that RF-BP can accurately predict the BP of users and provide alerts for users with hypertension. Over the self-built dataset, the mean absolute error (MAE) and standard deviation (SD) for SBP are 6.5 mmHg and 6.1 mmHg, and the MAE and SD for DBP are 4.7 mmHg and 4.9 mmHg.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3659617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Blood Pressure (BP) is a critical vital sign to assess cardiovascular health. However, existing cuff-based and wearable-based BP measurement methods require direct contact between the user's skin and the device, resulting in poor user experience and limited engagement for regular daily monitoring of BP. In this paper, we propose a contactless approach using Ultra-WideBand (UWB) signals for regular daily BP monitoring. To remove components of the received signals that are not related to the pulse waves, we propose two methods that utilize peak detection and principal component analysis to identify aliased and deformed parts. Furthermore, to extract BP-related features and improve the accuracy of BP prediction, particularly for hypertensive users, we construct a deep learning model that extracts features of pulse waves at different scales and identifies the different effects of features on BP. We build the corresponding BP monitoring system named RF-BP and conduct extensive experiments on both a public dataset and a self-built dataset. The experimental results show that RF-BP can accurately predict the BP of users and provide alerts for users with hypertension. Over the self-built dataset, the mean absolute error (MAE) and standard deviation (SD) for SBP are 6.5 mmHg and 6.1 mmHg, and the MAE and SD for DBP are 4.7 mmHg and 4.9 mmHg.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 UWB 传感技术快速、轻松地监测血压
血压(BP)是评估心血管健康的重要生命体征。然而,现有的袖带式和可穿戴式血压测量方法需要用户的皮肤与设备直接接触,导致用户体验不佳,日常定期监测血压的参与度有限。在本文中,我们提出了一种利用超宽带(UWB)信号进行日常血压定期监测的非接触式方法。为了去除接收信号中与脉搏波无关的成分,我们提出了两种方法,利用峰值检测和主成分分析来识别混叠和变形部分。此外,为了提取与血压相关的特征并提高血压预测的准确性,尤其是针对高血压用户,我们构建了一个深度学习模型,以提取不同尺度脉搏波的特征,并识别特征对血压的不同影响。我们建立了名为 RF-BP 的相应血压监测系统,并在公共数据集和自建数据集上进行了大量实验。实验结果表明,RF-BP 可以准确预测用户的血压,并为患有高血压的用户提供警报。在自建数据集上,SBP 的平均绝对误差(MAE)和标准偏差(SD)分别为 6.5 mmHg 和 6.1 mmHg,DBP 的平均绝对误差(MAE)和标准偏差(SD)分别为 4.7 mmHg 和 4.9 mmHg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Talk2Care: An LLM-based Voice Assistant for Communication between Healthcare Providers and Older Adults A Digital Companion Architecture for Ambient Intelligence Waving Hand as Infrared Source for Ubiquitous Gas Sensing PPG-Hear: A Practical Eavesdropping Attack with Photoplethysmography Sensors User-directed Assembly Code Transformations Enabling Efficient Batteryless Arduino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1