A Modified Enthalpic Lattice Boltzmann Method for Simulating Conjugate Heat Transfer Problems in Non-Homogeneous Media

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY Inventions Pub Date : 2024-05-13 DOI:10.3390/inventions9030057
Vinicius Akyo Matsuda, Ivan Talão Martins, Debora Carneiro Moreira, L. Cabezas-Gómez, Ê. B. Bandarra Filho
{"title":"A Modified Enthalpic Lattice Boltzmann Method for Simulating Conjugate Heat Transfer Problems in Non-Homogeneous Media","authors":"Vinicius Akyo Matsuda, Ivan Talão Martins, Debora Carneiro Moreira, L. Cabezas-Gómez, Ê. B. Bandarra Filho","doi":"10.3390/inventions9030057","DOIUrl":null,"url":null,"abstract":"In this study, we introduced modifications to a prior existing enthalpic lattice Boltzmann method (LBM) tailored for simulating the conjugate heat transfer phenomena in non-homogeneous media with time-dependent thermal properties. Our approach is based upon the incorporation of the remaining terms of a conservative energy equation, excluding only the terms regarding flow compressibility and viscous dissipation, thereby accounting for the local and transient variations in the thermophysical properties. The solutions of verification tests, comprising assessments of both transient and steady-state solutions, validated the accuracy of the proposed model, further bolstering its reliability for analyzing heat transfer processes. The modified model was then used to perform an analysis on structured cavities under free convection, revealing compelling insights, particularly regarding transient regimes, demonstrating that the structured cavities exhibit a beneficial impact on enhancing the heat transfer processes, hence providing insights for potential design enhancements in heat exchangers. These results demonstrate the potential of our modified enthalpic LBM approach for simulating complex heat transfer phenomena in non-homogeneous media and structured geometries, offering valuable results for heat exchanger engineering and optimization.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions9030057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduced modifications to a prior existing enthalpic lattice Boltzmann method (LBM) tailored for simulating the conjugate heat transfer phenomena in non-homogeneous media with time-dependent thermal properties. Our approach is based upon the incorporation of the remaining terms of a conservative energy equation, excluding only the terms regarding flow compressibility and viscous dissipation, thereby accounting for the local and transient variations in the thermophysical properties. The solutions of verification tests, comprising assessments of both transient and steady-state solutions, validated the accuracy of the proposed model, further bolstering its reliability for analyzing heat transfer processes. The modified model was then used to perform an analysis on structured cavities under free convection, revealing compelling insights, particularly regarding transient regimes, demonstrating that the structured cavities exhibit a beneficial impact on enhancing the heat transfer processes, hence providing insights for potential design enhancements in heat exchangers. These results demonstrate the potential of our modified enthalpic LBM approach for simulating complex heat transfer phenomena in non-homogeneous media and structured geometries, offering valuable results for heat exchanger engineering and optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于模拟非均质介质中共轭传热问题的改进型焓点阵玻尔兹曼法
在本研究中,我们对先前存在的焓晶格玻尔兹曼方法(LBM)进行了修改,该方法专门用于模拟热特性随时间变化的非均质介质中的共轭传热现象。我们的方法基于纳入保守能量方程的剩余项,仅排除有关流动可压缩性和粘性耗散的项,从而考虑热物理性质的局部和瞬时变化。验证测试的解决方案包括瞬态和稳态解决方案的评估,验证了拟议模型的准确性,进一步增强了其分析传热过程的可靠性。修改后的模型随后被用于对自由对流条件下的结构化空腔进行分析,揭示了令人信服的见解,尤其是在瞬态方面,证明了结构化空腔对增强传热过程的有益影响,从而为热交换器的潜在设计改进提供了启示。这些结果证明了我们的改进型焓 LBM 方法在模拟非均质介质和结构几何中复杂传热现象方面的潜力,为热交换器工程设计和优化提供了宝贵的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
期刊最新文献
PI3SO: A Spectroscopic γ-Ray Scanner Table for Sort and Segregate Radwaste Analysis Aircraft Innovation Trends Enabling Advanced Air Mobility The Effect of Individual Hydrocarbons in the Composition of Diesel Fuel on the Effectiveness of Depressant Additives A Review of Available Solutions for Implementation of Small–Medium Combined Heat and Power (CHP) Systems Real-Time Precision in 3D Concrete Printing: Controlling Layer Morphology via Machine Vision and Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1