Junqi Ma, Fusang Zhang, Beihong Jin, C. Su, Siheng Li, Zhi Wang, Jiazhi Ni
{"title":"Push the Limit of Highly Accurate Ranging on Commercial UWB Devices","authors":"Junqi Ma, Fusang Zhang, Beihong Jin, C. Su, Siheng Li, Zhi Wang, Jiazhi Ni","doi":"10.1145/3659602","DOIUrl":null,"url":null,"abstract":"Ranging plays a crucial role in many wireless sensing applications. Among the wireless techniques employed for ranging, Ultra-Wideband (UWB) has received much attention due to its excellent performance and widespread integration into consumer-level electronics. However, the ranging accuracy of the current UWB systems is limited to the centimeter level due to bandwidth limitation, hindering their use for applications that require a very high resolution. This paper proposes a novel system that achieves sub-millimeter-level ranging accuracy on commercial UWB devices for the first time. Our approach leverages the fine-grained phase information of commercial UWB devices. To eliminate the phase drift, we design a fine-grained phase recovery method by utilizing the bi-directional messages in UWB two-way ranging. We further present a dual-frequency switching method to resolve phase ambiguity. Building upon this, we design and implement the ranging system on commercial UWB modules. Extensive experiments demonstrate that our system achieves a median ranging error of just 0.77 mm, reducing the error by 96.54% compared to the state-of-the-art method. We also present three real-life applications to showcase the fine-grained sensing capabilities of our system, including i) smart speaker control, ii) free-style user handwriting, and iii) 3D tracking for virtual-reality (VR) controllers.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3659602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Ranging plays a crucial role in many wireless sensing applications. Among the wireless techniques employed for ranging, Ultra-Wideband (UWB) has received much attention due to its excellent performance and widespread integration into consumer-level electronics. However, the ranging accuracy of the current UWB systems is limited to the centimeter level due to bandwidth limitation, hindering their use for applications that require a very high resolution. This paper proposes a novel system that achieves sub-millimeter-level ranging accuracy on commercial UWB devices for the first time. Our approach leverages the fine-grained phase information of commercial UWB devices. To eliminate the phase drift, we design a fine-grained phase recovery method by utilizing the bi-directional messages in UWB two-way ranging. We further present a dual-frequency switching method to resolve phase ambiguity. Building upon this, we design and implement the ranging system on commercial UWB modules. Extensive experiments demonstrate that our system achieves a median ranging error of just 0.77 mm, reducing the error by 96.54% compared to the state-of-the-art method. We also present three real-life applications to showcase the fine-grained sensing capabilities of our system, including i) smart speaker control, ii) free-style user handwriting, and iii) 3D tracking for virtual-reality (VR) controllers.