Push the Limit of Highly Accurate Ranging on Commercial UWB Devices

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-05-13 DOI:10.1145/3659602
Junqi Ma, Fusang Zhang, Beihong Jin, C. Su, Siheng Li, Zhi Wang, Jiazhi Ni
{"title":"Push the Limit of Highly Accurate Ranging on Commercial UWB Devices","authors":"Junqi Ma, Fusang Zhang, Beihong Jin, C. Su, Siheng Li, Zhi Wang, Jiazhi Ni","doi":"10.1145/3659602","DOIUrl":null,"url":null,"abstract":"Ranging plays a crucial role in many wireless sensing applications. Among the wireless techniques employed for ranging, Ultra-Wideband (UWB) has received much attention due to its excellent performance and widespread integration into consumer-level electronics. However, the ranging accuracy of the current UWB systems is limited to the centimeter level due to bandwidth limitation, hindering their use for applications that require a very high resolution. This paper proposes a novel system that achieves sub-millimeter-level ranging accuracy on commercial UWB devices for the first time. Our approach leverages the fine-grained phase information of commercial UWB devices. To eliminate the phase drift, we design a fine-grained phase recovery method by utilizing the bi-directional messages in UWB two-way ranging. We further present a dual-frequency switching method to resolve phase ambiguity. Building upon this, we design and implement the ranging system on commercial UWB modules. Extensive experiments demonstrate that our system achieves a median ranging error of just 0.77 mm, reducing the error by 96.54% compared to the state-of-the-art method. We also present three real-life applications to showcase the fine-grained sensing capabilities of our system, including i) smart speaker control, ii) free-style user handwriting, and iii) 3D tracking for virtual-reality (VR) controllers.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3659602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Ranging plays a crucial role in many wireless sensing applications. Among the wireless techniques employed for ranging, Ultra-Wideband (UWB) has received much attention due to its excellent performance and widespread integration into consumer-level electronics. However, the ranging accuracy of the current UWB systems is limited to the centimeter level due to bandwidth limitation, hindering their use for applications that require a very high resolution. This paper proposes a novel system that achieves sub-millimeter-level ranging accuracy on commercial UWB devices for the first time. Our approach leverages the fine-grained phase information of commercial UWB devices. To eliminate the phase drift, we design a fine-grained phase recovery method by utilizing the bi-directional messages in UWB two-way ranging. We further present a dual-frequency switching method to resolve phase ambiguity. Building upon this, we design and implement the ranging system on commercial UWB modules. Extensive experiments demonstrate that our system achieves a median ranging error of just 0.77 mm, reducing the error by 96.54% compared to the state-of-the-art method. We also present three real-life applications to showcase the fine-grained sensing capabilities of our system, including i) smart speaker control, ii) free-style user handwriting, and iii) 3D tracking for virtual-reality (VR) controllers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突破商用 UWB 设备高精度测距的极限
测距在许多无线传感应用中发挥着至关重要的作用。在用于测距的无线技术中,超宽带(UWB)因其卓越的性能和广泛集成到消费级电子产品中而备受关注。然而,由于带宽的限制,目前的超宽带系统的测距精度仅限于厘米级,阻碍了其在需要极高分辨率的应用中的使用。本文提出了一种新型系统,首次在商用 UWB 设备上实现了亚毫米级的测距精度。我们的方法利用了商用 UWB 设备的细粒度相位信息。为了消除相位漂移,我们利用 UWB 双向测距中的双向信息设计了一种细粒度相位恢复方法。我们进一步提出了一种解决相位模糊的双频切换方法。在此基础上,我们在商用 UWB 模块上设计并实现了测距系统。广泛的实验证明,我们的系统实现的中值测距误差仅为 0.77 mm,与最先进的方法相比,误差减少了 96.54%。我们还介绍了三个实际应用,以展示我们系统的细粒度传感能力,包括 i) 智能扬声器控制;ii) 自由式用户手写;iii) 虚拟现实(VR)控制器的 3D 跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Talk2Care: An LLM-based Voice Assistant for Communication between Healthcare Providers and Older Adults A Digital Companion Architecture for Ambient Intelligence Waving Hand as Infrared Source for Ubiquitous Gas Sensing PPG-Hear: A Practical Eavesdropping Attack with Photoplethysmography Sensors User-directed Assembly Code Transformations Enabling Efficient Batteryless Arduino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1