Fractionation and reconstitution of the sarcoplasmic reticulum Ca2+ pump solubilized and stabilized by CHAPS/lipid micelles.

S M Helmke, B D Howard
{"title":"Fractionation and reconstitution of the sarcoplasmic reticulum Ca2+ pump solubilized and stabilized by CHAPS/lipid micelles.","authors":"S M Helmke,&nbsp;B D Howard","doi":"10.3109/09687688709029426","DOIUrl":null,"url":null,"abstract":"<p><p>A procedure for solubilization, fractionation, and reconstitution of sarcoplasmic reticulum (SR) protein is presented. The SR protein is solubilized with the zwitterionic detergent CHAPS in the presence of added 5-mM phosphatidylcholine and 20% glycerol, which stabilize the reconstitutable Ca2+ transport activity. For reconstitution the solubilized SR protein is incorporated into preformed French-pressed unilamellar vesicles that had been treated with 10-mM sodium cholate. By passing the proteoliposomes through a centrifuged Sephadex G-50 column that had been equilibrated with potassium oxalate, the detergent is removed, and the proteoliposomes become sealed with potassium oxalate trapped inside. This procedure requires less than 2 h and results in Ca2+ uptake active of over 1 mumol/min/mg of protein. The solubilized SR protein was fractionated on a DEAE-Biogel A column. A fraction containing the Ca2+-ATPase but not the Mr 55,000 glycoprotein had reconstitutable Ca2+ uptake activity of 2.2 mumol/min/mg of protein. Inclusion of the Mr 55,000 glycoprotein during the reconstitution procedure did not increase the Ca2+ uptake activity of the reconstituted fraction containing the Ca2+-ATPase. This result demonstrates that the glycoprotein is not required for Ca2+ uptake.</p>","PeriodicalId":18448,"journal":{"name":"Membrane biochemistry","volume":"7 1","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688709029426","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688709029426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A procedure for solubilization, fractionation, and reconstitution of sarcoplasmic reticulum (SR) protein is presented. The SR protein is solubilized with the zwitterionic detergent CHAPS in the presence of added 5-mM phosphatidylcholine and 20% glycerol, which stabilize the reconstitutable Ca2+ transport activity. For reconstitution the solubilized SR protein is incorporated into preformed French-pressed unilamellar vesicles that had been treated with 10-mM sodium cholate. By passing the proteoliposomes through a centrifuged Sephadex G-50 column that had been equilibrated with potassium oxalate, the detergent is removed, and the proteoliposomes become sealed with potassium oxalate trapped inside. This procedure requires less than 2 h and results in Ca2+ uptake active of over 1 mumol/min/mg of protein. The solubilized SR protein was fractionated on a DEAE-Biogel A column. A fraction containing the Ca2+-ATPase but not the Mr 55,000 glycoprotein had reconstitutable Ca2+ uptake activity of 2.2 mumol/min/mg of protein. Inclusion of the Mr 55,000 glycoprotein during the reconstitution procedure did not increase the Ca2+ uptake activity of the reconstituted fraction containing the Ca2+-ATPase. This result demonstrates that the glycoprotein is not required for Ca2+ uptake.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由CHAPS/脂质胶束溶解和稳定的肌浆网Ca2+泵的分离和重构。
提出了肌浆网(SR)蛋白的溶解、分离和重构的方法。SR蛋白与两性离子洗涤剂CHAPS在添加5-mM磷脂酰胆碱和20%甘油的情况下溶解,稳定了可重构Ca2+运输活性。为了进行重构,将溶解的SR蛋白掺入用10毫米胆酸钠处理过的预制法压单层囊泡中。将蛋白脂质体通过与草酸钾平衡的离心Sephadex G-50柱,去除洗涤剂,蛋白脂质体被草酸钾封闭。这个过程需要不到2小时,结果Ca2+摄取活性超过1 μ mol/min/mg蛋白质。溶解后的SR蛋白在DEAE-Biogel a柱上分离。含有Ca2+- atp酶而不含Mr 55000糖蛋白的部分具有可重构的Ca2+摄取活性,为2.2 μ mol/min/mg蛋白质。在重组过程中包含Mr 55000糖蛋白并没有增加含有Ca2+- atp酶的重组部分的Ca2+摄取活性。这一结果表明糖蛋白不是Ca2+摄取所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Properties of the ryanodine receptor present in the sarcoplasmic reticulum from lobster skeletal muscle. Uncoupling of occlusion from ATP hydrolysis activity in sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase. Use of the fluorescent probe Laurdan to investigate structural organization of the vesicular stomatitis virus (VSV) membrane. Inactivation of firefly luciferase and rat erythrocyte ATPase by ultrasound. Effect of free radical scavengers on changes in ion conductance during exposure to therapeutic ultrasound.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1