Fast Exploring Literature by Language Machine Learning for Perovskite Solar Cell Materials Design

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-05-12 DOI:10.1002/aisy.202300678
Lei Zhang, Yiru Huang, Leiming Yan, Jinghao Ge, Xiaokang Ma, Zhike Liu, Jiaxue You, Alex K. Y. Jen, Shengzhong Frank Liu
{"title":"Fast Exploring Literature by Language Machine Learning for Perovskite Solar Cell Materials Design","authors":"Lei Zhang,&nbsp;Yiru Huang,&nbsp;Leiming Yan,&nbsp;Jinghao Ge,&nbsp;Xiaokang Ma,&nbsp;Zhike Liu,&nbsp;Jiaxue You,&nbsp;Alex K. Y. Jen,&nbsp;Shengzhong Frank Liu","doi":"10.1002/aisy.202300678","DOIUrl":null,"url":null,"abstract":"<p>Making computers automatically extract latent scientific knowledge from literature is highly desired for future materials and chemical research in the artificial intelligence era. Herein, the natural language processing (NLP)-based machine learning technique to build language models and automatically extract hidden information regarding perovskite solar cell (PSC) materials from 29 060 publications is employed. The concept that there are light-absorbing materials, electron-transporting materials, and hole-transporting materials in PSCs is successfully learned by the NLP-based machine learning model without a time-consuming human expert training process. The NLP model highlights a hole-transporting material that receives insufficient attention in the literature, which is then elaborated via density functional theory calculations to provide an atomistic view of the perovskite/hole-transporting layer heterostructures and their optoelectronic properties. Finally, the above results are confirmed by device experiments. The present study demonstrates the viability of NLP as a universal machine learning tool to extract useful information from existing publications.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202300678","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202300678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Making computers automatically extract latent scientific knowledge from literature is highly desired for future materials and chemical research in the artificial intelligence era. Herein, the natural language processing (NLP)-based machine learning technique to build language models and automatically extract hidden information regarding perovskite solar cell (PSC) materials from 29 060 publications is employed. The concept that there are light-absorbing materials, electron-transporting materials, and hole-transporting materials in PSCs is successfully learned by the NLP-based machine learning model without a time-consuming human expert training process. The NLP model highlights a hole-transporting material that receives insufficient attention in the literature, which is then elaborated via density functional theory calculations to provide an atomistic view of the perovskite/hole-transporting layer heterostructures and their optoelectronic properties. Finally, the above results are confirmed by device experiments. The present study demonstrates the viability of NLP as a universal machine learning tool to extract useful information from existing publications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过语言机器学习快速探索文献,设计 Perovskite 太阳能电池材料
让计算机自动从文献中提取潜在的科学知识,是人工智能时代未来材料和化学研究的殷切希望。本文采用基于自然语言处理(NLP)的机器学习技术,从 29 060 篇文献中建立语言模型并自动提取有关包晶体太阳能电池(PSC)材料的隐藏信息。基于 NLP 的机器学习模型成功地学习了 PSC 中存在光吸收材料、电子传输材料和空穴传输材料的概念,而无需耗时的人工专家培训过程。NLP 模型强调了一种在文献中未得到充分关注的空穴传输材料,然后通过密度泛函理论计算对其进行了阐述,从而提供了一种关于包晶/空穴传输层异质结构及其光电特性的原子论视图。最后,上述结果得到了器件实验的证实。本研究证明了 NLP 作为通用机器学习工具从现有出版物中提取有用信息的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead Reconstructing Soft Robotic Touch via In-Finger Vision A Cable-Actuated Soft Manipulator for Dexterous Grasping Based on Deep Reinforcement Learning Liquid Metal Chameleon Tongues: Modulating Surface Tension and Phase Transition to Enable Bioinspired Soft Actuators Reprogrammable, Recyclable Origami Robots Controlled by Magnetic Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1