Ji Liu, Zheng Xu, Ying Yang, Kun Zhou, Munish Kumar
{"title":"Dynamic Prediction Model of Financial Asset Volatility Based on Bidirectional Recurrent Neural Networks","authors":"Ji Liu, Zheng Xu, Ying Yang, Kun Zhou, Munish Kumar","doi":"10.4018/joeuc.345925","DOIUrl":null,"url":null,"abstract":"Predicting financial market volatility is essential for investors and risk management. This study proposes a dynamic prediction model for financial asset volatility, with a Bi-directional Recurrent Neural Network (Bi-RNN) utilized to cleverly address market complexity. Our framework integrates Bi-RNN and gated recurrent units (GRU) to perform global optimization via particle swarm optimization algorithm (PSO). Bi-RNN combines historical data and future expectations, while GRU effectively solves long-term dependency issues through a gating mechanism, which enhances model generalization. Experimental results show that the model exhibits significant performance advantages on different financial datasets, along with strong learning and generalization capabilities superior to traditional methods. This research provides advanced and practical solutions for financial asset fluctuation prediction and is of positive significance for the greater accuracy of investment decisions and risk mitigation.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" 5","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.345925","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
Predicting financial market volatility is essential for investors and risk management. This study proposes a dynamic prediction model for financial asset volatility, with a Bi-directional Recurrent Neural Network (Bi-RNN) utilized to cleverly address market complexity. Our framework integrates Bi-RNN and gated recurrent units (GRU) to perform global optimization via particle swarm optimization algorithm (PSO). Bi-RNN combines historical data and future expectations, while GRU effectively solves long-term dependency issues through a gating mechanism, which enhances model generalization. Experimental results show that the model exhibits significant performance advantages on different financial datasets, along with strong learning and generalization capabilities superior to traditional methods. This research provides advanced and practical solutions for financial asset fluctuation prediction and is of positive significance for the greater accuracy of investment decisions and risk mitigation.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico