{"title":"Heavy Metal Phytoremediation by Crop Species at Hebbal Industrial Area, Mysuru, India","authors":"Santhosh M. Sosale, R. N S","doi":"10.12944/cwe.19.1.36","DOIUrl":null,"url":null,"abstract":"Heavy metals are frequently added to the soil in the area of study as a result of industrialization. Removing this heavy metal from the soil is a difficult procedure, and phytoremediation is an essential and effective method for remediation. Heavy metals present in the study area include Fe, Cu, Cd, Pb, and Zn. Two plants namely Brassica juncea L. and Rapanus sativus L. were successfully grown on the polluted areas soil samples for phytoremediation. Brassica juncea L remediates the heavy metals Cu, Zn, Pb, and Cd, while Rapanus sativus L remediates Cd, Cu, Pb, and Fe. These two plants can uptake metal from roots to shoots, which means metal concentration is transferred from roots to shoots of the plant, indirectly decreasing concentration in the soil. Brassica juncea L was remediated for heavy metals Cd, Cu, Pb, and Zn at a rate of 25.47%, 38.74%, 31.60%, and 26.75%, respectively. The remediation percentages for Rapanus sativus L of Cd, Cu, Pb, and Fe were 21.01%, 37.08%, 23.77%, and 47.19%, respectively. Brassica juncea L remediate in the order of Cu>Pb>Zn>Cd, and Rapanus sativus L Fe>Cu>Pb>Cd were in decreasing order. Shoots of Brassica juncea L had a higher bioconcentration than the roots of Rapanus sativus L, which clearly explains the metal uptake capacity of the plant. This paper investigated the uptake of heavy metals from roots to shoots, as well as their bioconcentration.","PeriodicalId":10878,"journal":{"name":"Current World Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current World Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12944/cwe.19.1.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metals are frequently added to the soil in the area of study as a result of industrialization. Removing this heavy metal from the soil is a difficult procedure, and phytoremediation is an essential and effective method for remediation. Heavy metals present in the study area include Fe, Cu, Cd, Pb, and Zn. Two plants namely Brassica juncea L. and Rapanus sativus L. were successfully grown on the polluted areas soil samples for phytoremediation. Brassica juncea L remediates the heavy metals Cu, Zn, Pb, and Cd, while Rapanus sativus L remediates Cd, Cu, Pb, and Fe. These two plants can uptake metal from roots to shoots, which means metal concentration is transferred from roots to shoots of the plant, indirectly decreasing concentration in the soil. Brassica juncea L was remediated for heavy metals Cd, Cu, Pb, and Zn at a rate of 25.47%, 38.74%, 31.60%, and 26.75%, respectively. The remediation percentages for Rapanus sativus L of Cd, Cu, Pb, and Fe were 21.01%, 37.08%, 23.77%, and 47.19%, respectively. Brassica juncea L remediate in the order of Cu>Pb>Zn>Cd, and Rapanus sativus L Fe>Cu>Pb>Cd were in decreasing order. Shoots of Brassica juncea L had a higher bioconcentration than the roots of Rapanus sativus L, which clearly explains the metal uptake capacity of the plant. This paper investigated the uptake of heavy metals from roots to shoots, as well as their bioconcentration.