Efficacy of Modified Magnolia champaca Bark Powder in Sequestration of Divalent Ions from Aqueous Matrices

N. Andal, P. Indhumathy
{"title":"Efficacy of Modified Magnolia champaca Bark Powder in Sequestration of Divalent Ions from Aqueous Matrices","authors":"N. Andal, P. Indhumathy","doi":"10.12944/cwe.19.1.6","DOIUrl":null,"url":null,"abstract":"Noxious effluents let out from large cum small- scale industries has led to acute adverse environmental impact over a time period. In spite of various types of pollutants present in the discharges, heavy metals have been proven to be lethal to all living organisms, whilst exceeding the tolerance levels. In this regard, their confiscation has become inevitable by adoption of varied suitable methodologies. The current inquest is engrossed on probing the efficiency of an eco-derived material, Magnolia champaca Barks (MCB) to trap Zn(II) / Cd(II) ions from laboratory aqueous medium. This ecofriendly material is acid treated (TMCB), so as to improve its surface nature, evidently favoured by microscopic image study. Fourier Transformation Infra-Red and Scanning Electron Microscopy / Energy Dispersive X-Ray Analysis spectra are recorded for sorbent characterization. The factors which influence the sorptive effectiveness of TMCB include particle sizes, initial concentrations of the sorbate molecules, agitation time frames, dosages, pH values and temperatures. The concentrations of divalent ions in the pre and post run samples are assessed using Atomic Absorption Spectrophotometer. Maximum chelation of 98% Zn(II) and 96% Cd(II) had occurred under aligned parametric conditions, with variations in dosage, concentration and contact time interval. The aforementioned observations support the promising nature of the identified bark to adsorb toxic metal species.","PeriodicalId":10878,"journal":{"name":"Current World Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current World Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12944/cwe.19.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Noxious effluents let out from large cum small- scale industries has led to acute adverse environmental impact over a time period. In spite of various types of pollutants present in the discharges, heavy metals have been proven to be lethal to all living organisms, whilst exceeding the tolerance levels. In this regard, their confiscation has become inevitable by adoption of varied suitable methodologies. The current inquest is engrossed on probing the efficiency of an eco-derived material, Magnolia champaca Barks (MCB) to trap Zn(II) / Cd(II) ions from laboratory aqueous medium. This ecofriendly material is acid treated (TMCB), so as to improve its surface nature, evidently favoured by microscopic image study. Fourier Transformation Infra-Red and Scanning Electron Microscopy / Energy Dispersive X-Ray Analysis spectra are recorded for sorbent characterization. The factors which influence the sorptive effectiveness of TMCB include particle sizes, initial concentrations of the sorbate molecules, agitation time frames, dosages, pH values and temperatures. The concentrations of divalent ions in the pre and post run samples are assessed using Atomic Absorption Spectrophotometer. Maximum chelation of 98% Zn(II) and 96% Cd(II) had occurred under aligned parametric conditions, with variations in dosage, concentration and contact time interval. The aforementioned observations support the promising nature of the identified bark to adsorb toxic metal species.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改性厚朴树皮粉在从水基质中封存二价离子方面的功效
长期以来,大型和小型工业排放的有毒废水对环境造成了严重的负面影响。尽管排放物中存在各种类型的污染物,但重金属已被证明对所有生物都是致命的,同时超过了耐受水平。因此,采用各种适当的方法没收重金属已成为必然。目前的研究致力于探究一种生态衍生材料--白玉兰树皮(MCB)从实验室水介质中捕捉锌(II)/镉(II)离子的效率。这种生态友好型材料经过酸处理(TMCB),以改善其表面性质,显微图像研究显示了这一点。傅立叶变换红外光谱和扫描电子显微镜/能量色散 X 射线分析光谱记录了吸附剂的特征。影响 TMCB 吸附效果的因素包括颗粒大小、吸附剂分子的初始浓度、搅拌时间、剂量、pH 值和温度。使用原子吸收分光光度计对运行前和运行后样品中的二价离子浓度进行评估。在参数一致的条件下,随着剂量、浓度和接触时间间隔的变化,锌(II)螯合率达到 98%,镉(II)螯合率达到 96%。上述观察结果表明,所发现的树皮具有吸附有毒金属物种的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Cost Effective Fleet Electrification Possibilities for Public Transit Services in Kutch Region Bamboo Bandalling Technique for River Bank Protection and Flood Control – A Critical Review Metaanalysis of Public Wastewater Metagenomes: Revealing the Influence of Climatic Variations on the Abundance of the Bacterial Members Predictive Modeling of Extreme Weather Forecasting Events: an LSTM Approach Composting of Agro-Phyto wastes: An Overview on Process, factors and Applications for Sustainability of Environment and Agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1