Sparse matching via point and line feature fusion for robust aerial triangulation of photovoltaic power stations’ thermal infrared imagery

Tao Ke, Zhouyuan Ye, Xiao Zhang, Yifan Liao, Pengjie Tao
{"title":"Sparse matching via point and line feature fusion for robust aerial triangulation of photovoltaic power stations’ thermal infrared imagery","authors":"Tao Ke, Zhouyuan Ye, Xiao Zhang, Yifan Liao, Pengjie Tao","doi":"10.5194/isprs-annals-x-1-2024-107-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we present a novel matching method tailored for unmanned aerial vehicle (UAV) thermal infrared images of photovoltaic (PV) panels characterized by highly repetitive textures. This method capitalizes on the integration of point and line features within the image to obtain reliable corresponding points. Furthermore, it employs multiple constraints to eliminate mismatched features and get rid of the interference of repetitive textures on feature matching. To verify the effectiveness of the proposed method, we used an UAV equipped with the DJI Zenmuse H20T thermal infrared gimbal to capture 3767 images of a PV power station in Guangzhou, China. Experiments demonstrate that, for UAV thermal infrared images of PV panels, our method outperforms the state-of-the-art techniques in terms of the density of matching points, matching success rate and matching reliability, consequently leading to robust aerial triangulation results.\n","PeriodicalId":508124,"journal":{"name":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-annals-x-1-2024-107-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. In this paper, we present a novel matching method tailored for unmanned aerial vehicle (UAV) thermal infrared images of photovoltaic (PV) panels characterized by highly repetitive textures. This method capitalizes on the integration of point and line features within the image to obtain reliable corresponding points. Furthermore, it employs multiple constraints to eliminate mismatched features and get rid of the interference of repetitive textures on feature matching. To verify the effectiveness of the proposed method, we used an UAV equipped with the DJI Zenmuse H20T thermal infrared gimbal to capture 3767 images of a PV power station in Guangzhou, China. Experiments demonstrate that, for UAV thermal infrared images of PV panels, our method outperforms the state-of-the-art techniques in terms of the density of matching points, matching success rate and matching reliability, consequently leading to robust aerial triangulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过点和线特征融合进行稀疏匹配,实现光伏电站热红外图像的稳健空中三角测量
摘要本文提出了一种新颖的匹配方法,适用于以高度重复纹理为特征的光伏(PV)面板的无人机(UAV)热红外图像。该方法利用图像中点和线特征的整合来获得可靠的对应点。此外,它还采用多重约束来消除不匹配的特征,并摆脱重复纹理对特征匹配的干扰。为了验证所提方法的有效性,我们使用配备大疆 Zenmuse H20T 热红外云台的无人机拍摄了中国广州某光伏电站的 3767 幅图像。实验证明,对于无人机拍摄的光伏板热红外图像,我们的方法在匹配点密度、匹配成功率和匹配可靠性方面都优于最先进的技术,从而获得了稳健的空中三角测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Annals UAS Photogrammetry for Precise Digital Elevation Models of Complex Topography: A Strategy Guide Using Passive Multi-Modal Sensor Data for Thermal Simulation of Urban Surfaces Machine Learning Approaches for Vehicle Counting on Bridges Based on Global Ground-Based Radar Data Rectilinear Building Footprint Regularization Using Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1