Tariq Aziz, M. Naveed, M. A. Shabbir, Khizra Jabeen, Ayaz Ali Khan, Ammarah Hasnain, Zhennai Yang, A. Zinedine, João Miguel Rocha, Thamer H Albekairi
{"title":"Designing a Multiepitope Vaccine against the Foodborne Pathogenic Bacteria Listeria monocytogenes Using Subtractive Immunoinformatics Approaches","authors":"Tariq Aziz, M. Naveed, M. A. Shabbir, Khizra Jabeen, Ayaz Ali Khan, Ammarah Hasnain, Zhennai Yang, A. Zinedine, João Miguel Rocha, Thamer H Albekairi","doi":"10.31083/j.fbl2905176","DOIUrl":null,"url":null,"abstract":"Background : Listeria monocytogenes , a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. Methods : A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes . The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. Results : The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct’s efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. Conclusions : The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria , paving the way for future advances in preventive methods and vaccine design.","PeriodicalId":503756,"journal":{"name":"Frontiers in Bioscience-Landmark","volume":" 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioscience-Landmark","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbl2905176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background : Listeria monocytogenes , a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. Methods : A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes . The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. Results : The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct’s efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. Conclusions : The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria , paving the way for future advances in preventive methods and vaccine design.