Coated boron layers by boronization and a real-time boron coating using impurity powder dropper in LHD

Naoko Ashikawa, R. Lunsford, Federico Nespoli, E. Gilson, S. Kado, Jiansheng Hu, Yaowei Yu
{"title":"Coated boron layers by boronization and a real-time boron coating using impurity powder dropper in LHD","authors":"Naoko Ashikawa, R. Lunsford, Federico Nespoli, E. Gilson, S. Kado, Jiansheng Hu, Yaowei Yu","doi":"10.1088/2058-6272/ad495f","DOIUrl":null,"url":null,"abstract":"\n In Large Helical Device (LHD), diborane (B2H6) is used as a standard boron source for boronization, which is assisted by helium glow discharges. In 2019, a new Impurity Powder Dropper (IPD) system has been installed and is under evaluation as a real-time wall conditioning technique. In LHD), which is a large size heliotron device, an additional helium (He) glow discharge cleaning (GDC) after boronization has been operated for a reduction of hydrogen recycling from coated boron layers, and this operational time of 3 h was determined by spectroscopic data during glow discharges. A flat hydrogen profile is obtained on the top surface of coated boron on the specimen exposed to boronization, the result suggests a reduction of hydrogen at the top surface by He-GDC. Trapped oxygen in coated boron was obtained by boronization, and the coated boron, which has boron-oxide, on the first wall by B-IPD was also shown. Considering the difference in coating areas between B2H6 boronization and B-IPD operation, it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.","PeriodicalId":506986,"journal":{"name":"Plasma Science and Technology","volume":" 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad495f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Large Helical Device (LHD), diborane (B2H6) is used as a standard boron source for boronization, which is assisted by helium glow discharges. In 2019, a new Impurity Powder Dropper (IPD) system has been installed and is under evaluation as a real-time wall conditioning technique. In LHD), which is a large size heliotron device, an additional helium (He) glow discharge cleaning (GDC) after boronization has been operated for a reduction of hydrogen recycling from coated boron layers, and this operational time of 3 h was determined by spectroscopic data during glow discharges. A flat hydrogen profile is obtained on the top surface of coated boron on the specimen exposed to boronization, the result suggests a reduction of hydrogen at the top surface by He-GDC. Trapped oxygen in coated boron was obtained by boronization, and the coated boron, which has boron-oxide, on the first wall by B-IPD was also shown. Considering the difference in coating areas between B2H6 boronization and B-IPD operation, it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硼化硼涂层和在 LHD 中使用杂质粉末滴管进行实时硼涂层
在大型螺旋装置(LHD)中,二硼烷(B2H6)被用作硼化的标准硼源,由氦辉光放电辅助。2019 年,安装了一个新的杂质粉末滴管(IPD)系统,作为一种实时壁面调节技术正在接受评估。在大尺寸日辐射器(LHD)中,硼化后的额外氦(He)辉光放电清洗(GDC)已投入运行,以减少涂层硼层的氢回收,3 小时的运行时间是通过辉光放电期间的光谱数据确定的。在暴露于硼化的试样上,镀层硼的顶面获得了平坦的氢曲线,结果表明氦-GDC 减少了顶面的氢。通过硼化在涂层硼中获得了捕获的氧,同时还显示了通过 B-IPD 在第一壁上获得的具有氧化硼的涂层硼。考虑到 B2H6 化硼和 B-IPD 操作在涂层面积上的差异,将 IPD 和 B2H6 化硼涂层结合使用以优化壁调节将最为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated design and performance optimization of three-electrode sliding discharge plasma power supply Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3 Characteristics of divertor heat flux distribution with an island divertor configuration on the J-TEXT tokamak Synthesis of NO by rotating sliding arc discharge reactor with conical-spiral electrodes Analyses of non-equilibrium transports in atmospheric-pressure direct-current argon discharges under different modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1