G. Mboowa, Francis Kakooza, Moses Egesa, Stephen Tukwasibwe, Stephen Kanyerezi, Ivan Sserwadda, Benson R. Kidenya, Jupiter Marina Kabahita, Maria Magdalene Namaganda, Mike Nsubuga, Patricia Nabisubi, Alisen Ayitewala, Grace Kebirungi, Esther Nakafu, Natasha Patience Akwii
{"title":"The rise of pathogen genomics in Africa","authors":"G. Mboowa, Francis Kakooza, Moses Egesa, Stephen Tukwasibwe, Stephen Kanyerezi, Ivan Sserwadda, Benson R. Kidenya, Jupiter Marina Kabahita, Maria Magdalene Namaganda, Mike Nsubuga, Patricia Nabisubi, Alisen Ayitewala, Grace Kebirungi, Esther Nakafu, Natasha Patience Akwii","doi":"10.12688/f1000research.147114.1","DOIUrl":null,"url":null,"abstract":"The routine genomic surveillance of pathogens in diverse geographical settings and equitable data sharing are critical to inform effective infection control and therapeutic development. The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of routine genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to detect emerging variants of concern. However, the majority of high-income countries sequenced >0.5% of their COVID-19 cases, unlike low- and middle-income countries. By the end of 2022, many countries around the world had managed to establish capacity for pathogen genomic surveillance. Notably, Beta and Omicron; 2 of the 5 current SARS-CoV-2 variants of concern were first discovered in Africa through an aggressive sequencing campaign led by African scientists. To sustain such infrastructure and expertise beyond this pandemic, other endemic pathogens should leverage this investment. Therefore, countries are establishing multi-pathogen genomic surveillance strategies. Here we provide a catalog of the current landscape of sequenced and publicly shared pathogens in different countries in Africa. Drawing upon our collective knowledge and expertise, we review the ever-evolving challenges and propose innovative recommendations.","PeriodicalId":504605,"journal":{"name":"F1000Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.147114.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The routine genomic surveillance of pathogens in diverse geographical settings and equitable data sharing are critical to inform effective infection control and therapeutic development. The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance of routine genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to detect emerging variants of concern. However, the majority of high-income countries sequenced >0.5% of their COVID-19 cases, unlike low- and middle-income countries. By the end of 2022, many countries around the world had managed to establish capacity for pathogen genomic surveillance. Notably, Beta and Omicron; 2 of the 5 current SARS-CoV-2 variants of concern were first discovered in Africa through an aggressive sequencing campaign led by African scientists. To sustain such infrastructure and expertise beyond this pandemic, other endemic pathogens should leverage this investment. Therefore, countries are establishing multi-pathogen genomic surveillance strategies. Here we provide a catalog of the current landscape of sequenced and publicly shared pathogens in different countries in Africa. Drawing upon our collective knowledge and expertise, we review the ever-evolving challenges and propose innovative recommendations.