Experimental Study of the Cavitating Flow on an Independently Heated Venturi Nozzle

Ning Yang, J. Okajima, Y. Iga
{"title":"Experimental Study of the Cavitating Flow on an Independently Heated Venturi Nozzle","authors":"Ning Yang, J. Okajima, Y. Iga","doi":"10.1115/1.4065505","DOIUrl":null,"url":null,"abstract":"\n Despite the observation of change in the cavitation regime on a heated surface, the specific section of the wall surface that plays a more dominant role in this transition phenomenon remains unknown. This study experimentally investigated the effect of surface temperature of different regions on the cavitating flow in terms of the cavitation regime. The experiments were conducted using a convergent-divergent Venturi nozzle comprising two parts that could be heated independently. The Venturi nozzle could be fully or selectively heated at either the front, where the leading edge of the cavity sheet was located, or the rear, where the cavity sheet developed. The cavitation behavior under different heating conditions was investigated using high-speed visualization and fluctuating pressure measurements. Compared with the non-heated case, which exhibited a sheet-cloud cavitation regime, the cavitation regime on the completely heated Venturi nozzle exhibited transient cavitation. The same transition phenomenon was observed when only the front of the Venturi nozzle was heated. A liquid film was observed beneath the cavity sheet of transient cavitation when only the front portion was heated. In contrast, heating the rear part alone did not induce a change in the cavitation regime. Thus, it appeared that the transition of the cavitation regime on a heated surface was mainly influenced by the temperature increase at the leading edge of the cavity sheet.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":" 40","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the observation of change in the cavitation regime on a heated surface, the specific section of the wall surface that plays a more dominant role in this transition phenomenon remains unknown. This study experimentally investigated the effect of surface temperature of different regions on the cavitating flow in terms of the cavitation regime. The experiments were conducted using a convergent-divergent Venturi nozzle comprising two parts that could be heated independently. The Venturi nozzle could be fully or selectively heated at either the front, where the leading edge of the cavity sheet was located, or the rear, where the cavity sheet developed. The cavitation behavior under different heating conditions was investigated using high-speed visualization and fluctuating pressure measurements. Compared with the non-heated case, which exhibited a sheet-cloud cavitation regime, the cavitation regime on the completely heated Venturi nozzle exhibited transient cavitation. The same transition phenomenon was observed when only the front of the Venturi nozzle was heated. A liquid film was observed beneath the cavity sheet of transient cavitation when only the front portion was heated. In contrast, heating the rear part alone did not induce a change in the cavitation regime. Thus, it appeared that the transition of the cavitation regime on a heated surface was mainly influenced by the temperature increase at the leading edge of the cavity sheet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
独立加热文丘里喷嘴气蚀流的实验研究
尽管观察到了受热表面空化机制的变化,但在这一过渡现象中起更主要作用的壁面特定部分仍然未知。本研究通过实验研究了不同区域的表面温度对气蚀流动的气蚀机制的影响。实验使用了一个汇聚-发散文丘里喷嘴,该喷嘴由两个可独立加热的部分组成。文丘里喷嘴的前部(空化片的前缘)或后部(空化片的发展区)可以完全加热,也可以选择性加热。通过高速可视化和波动压力测量,研究了不同加热条件下的空化行为。与表现出片云空化机制的未加热情况相比,完全加热的文丘里喷嘴上的空化机制表现出瞬态空化。当仅加热文丘里喷嘴的前端时,也观察到了同样的过渡现象。仅加热前部时,在瞬态空化的空腔片下观察到一层液膜。相比之下,仅加热后部并不会引起空化机制的变化。由此看来,加热表面上空化机制的转变主要受空腔片前缘温度升高的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Tire Attributes on the Aerodynamic Performance of a Generic Car-Tire Assembly1 Hydrodynamic Design and Pulsation Evolution in an Axial-Flow Pump Based On Control Mechanism of Flow-Induced Excitation Numerical Investigation of the Impact of the Rectangular Nozzle Aspect Ratio On Liquid Jet in Crossflow Numerical Study On the Effect of Channel Configuration On Mixture Formation of an Axial Flow Wave Rotor Combustor Study of Temperature Drop Region in Transitional Region in Fluid-film Thrust Bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1