Parallelizing Air Shower Simulation for Background Characterization in IceCube

K. Meagher, J. Santen
{"title":"Parallelizing Air Shower Simulation for Background Characterization in IceCube","authors":"K. Meagher, J. Santen","doi":"10.1051/epjconf/202429511016","DOIUrl":null,"url":null,"abstract":"The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the Geographic South Pole. For every observed neutrino event, there are over 106 background events caused by cosmic ray air shower muons. In order to properly separate signal from background, it is necessary to produce Monte Carlo simulations of these air showers. Although to-date, IceCube has produced large quantities of background simulation, these studies still remain statistics limited. The first stage of simulation requires heavy CPU usage while the second stage requires heavy GPU usage. Processing both of these stages on the same node will result in an underutilized GPU but using different nodes will encounter bandwidth bottlenecks. Furthermore, due to the power-law energy spectrum of cosmic rays, the memory footprint of the detector response often exceeded the limit in unpredictable ways. This proceeding presents new client–server code which parallelizes the first stage onto multiple CPUs on the same node and then passes it on to the GPU for photon propagation. This results in GPU utilization of greater than 90% as well as more predictable memory usage and an overall factor of 20 improvement in speed over previous techniques.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202429511016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The IceCube Neutrino Observatory is a cubic kilometer neutrino telescope located at the Geographic South Pole. For every observed neutrino event, there are over 106 background events caused by cosmic ray air shower muons. In order to properly separate signal from background, it is necessary to produce Monte Carlo simulations of these air showers. Although to-date, IceCube has produced large quantities of background simulation, these studies still remain statistics limited. The first stage of simulation requires heavy CPU usage while the second stage requires heavy GPU usage. Processing both of these stages on the same node will result in an underutilized GPU but using different nodes will encounter bandwidth bottlenecks. Furthermore, due to the power-law energy spectrum of cosmic rays, the memory footprint of the detector response often exceeded the limit in unpredictable ways. This proceeding presents new client–server code which parallelizes the first stage onto multiple CPUs on the same node and then passes it on to the GPU for photon propagation. This results in GPU utilization of greater than 90% as well as more predictable memory usage and an overall factor of 20 improvement in speed over previous techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为冰立方背景特征描述进行并行气流喷淋模拟
冰立方中微子天文台是一个立方公里的中微子望远镜,位于地理南极。每观测到一个中微子事件,就会有超过 106 个由宇宙射线气雨μ介子引起的背景事件。为了正确分离信号和背景,有必要对这些气雨进行蒙特卡洛模拟。尽管到目前为止,冰立方已经进行了大量的背景模拟,但这些研究仍然受到统计数字的限制。第一阶段的模拟需要大量使用 CPU,而第二阶段则需要大量使用 GPU。在同一节点上处理这两个阶段会导致GPU利用率不足,但使用不同节点又会遇到带宽瓶颈。此外,由于宇宙射线的幂律能谱,探测器响应的内存占用经常以不可预测的方式超出极限。本论文提出了新的客户端-服务器代码,它将第一阶段并行到同一节点上的多个 CPU 上,然后将其传递给 GPU 进行光子传播。这使得 GPU 的利用率超过 90%,内存的使用更可预测,速度比以前的技术总体提高了 20 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Heavy flavor and quarkonia results from the PHENIX experiment The ups and downs of inferred cosmological lithium Repurposing of the Run 2 CMS High Level Trigger Infrastructure as a Cloud Resource for Offline Computing HPC resources for CMS offline computing: An integration and scalability challenge for the Submission Infrastructure Adoption of a token-based authentication model for the CMS Submission Infrastructure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1