COSGAP: COntainerized statistical genetics analysis pipelines

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-05-09 DOI:10.1093/bioadv/vbae067
B. Akdeniz, O. Frei, Espen Hagen, T. T. Filiz, Sandeep Karthikeyan, Joëlle Pasman, Andreas Jangmo, Jacob Bergstedt, John R Shorter, Richard Zetterberg, J. Meijsen, I. Sønderby, Alfonso Buil, M. Tesli, Yi Lu, Patrick Sullivan, Ole A Andreassen, E. Hovig
{"title":"COSGAP: COntainerized statistical genetics analysis pipelines","authors":"B. Akdeniz, O. Frei, Espen Hagen, T. T. Filiz, Sandeep Karthikeyan, Joëlle Pasman, Andreas Jangmo, Jacob Bergstedt, John R Shorter, Richard Zetterberg, J. Meijsen, I. Sønderby, Alfonso Buil, M. Tesli, Yi Lu, Patrick Sullivan, Ole A Andreassen, E. Hovig","doi":"10.1093/bioadv/vbae067","DOIUrl":null,"url":null,"abstract":"\n \n \n The collection and analysis of sensitive data in large-scale consortia for statistical genetics is hampered by multiple challenges, due to their non-shareable nature. Time-consuming issues in installing software frequently arise due to different operating systems, software dependencies, and limited internet access. For federated analysis across sites, it can be challenging to resolve different problems, including format requirements, data wrangling, setting up analysis on high-performance computing facilities, etc. Easier, more standardized, automated protocols and pipelines can be solutions to overcome these issues. We have developed one such solution for statistical genetic data analysis using software container technologies. This solution, named COSGAP: “COntainerized Statistical Genetics Analysis Pipelines”, consists of already established software tools placed into Singularity containers, alongside corresponding code and instructions on how to perform statistical genetic analyses, such as genome-wide association studies, polygenic scoring, LD score regression, Gaussian Mixture Models, and gene-set analysis. Using provided helper scripts written in Python, users can obtain auto-generated scripts to conduct the desired analysis either on HPC facilities or on a personal computer. COSGAP is actively being applied by users from different countries and projects to conduct genetic data analyses without spending much effort on software installation, converting data formats, and other technical requirements.\n \n \n \n COSGAP is freely available on GitHub (https://github.com/comorment/containers) under the GPLv3 license.\n","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The collection and analysis of sensitive data in large-scale consortia for statistical genetics is hampered by multiple challenges, due to their non-shareable nature. Time-consuming issues in installing software frequently arise due to different operating systems, software dependencies, and limited internet access. For federated analysis across sites, it can be challenging to resolve different problems, including format requirements, data wrangling, setting up analysis on high-performance computing facilities, etc. Easier, more standardized, automated protocols and pipelines can be solutions to overcome these issues. We have developed one such solution for statistical genetic data analysis using software container technologies. This solution, named COSGAP: “COntainerized Statistical Genetics Analysis Pipelines”, consists of already established software tools placed into Singularity containers, alongside corresponding code and instructions on how to perform statistical genetic analyses, such as genome-wide association studies, polygenic scoring, LD score regression, Gaussian Mixture Models, and gene-set analysis. Using provided helper scripts written in Python, users can obtain auto-generated scripts to conduct the desired analysis either on HPC facilities or on a personal computer. COSGAP is actively being applied by users from different countries and projects to conduct genetic data analyses without spending much effort on software installation, converting data formats, and other technical requirements. COSGAP is freely available on GitHub (https://github.com/comorment/containers) under the GPLv3 license.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COSGAP:系统化统计遗传学分析管道
由于敏感数据的不可共享性,大规模统计遗传学联盟中敏感数据的收集和分析工作面临多重挑战。由于不同的操作系统、软件依赖性和有限的互联网接入,安装软件时经常出现费时费力的问题。对于跨站点的联合分析,要解决不同的问题,包括格式要求、数据处理、在高性能计算设备上进行分析等,都是极具挑战性的。更简便、更标准化、自动化的协议和管道是克服这些问题的解决方案。我们利用软件容器技术为统计遗传数据分析开发了这样一种解决方案。这个解决方案被命名为 COSGAP:COSGAP:"Conntainerized Statistical Genetics Analysis Pipelines",由放置在奇点容器中的已有软件工具以及相应的代码和说明组成,说明如何进行统计遗传分析,如全基因组关联研究、多基因评分、LD 评分回归、高斯混合模型和基因组分析。利用提供的用 Python 编写的辅助脚本,用户可以获得自动生成的脚本,在高性能计算设备或个人电脑上进行所需的分析。来自不同国家和项目的用户正在积极使用 COSGAP 进行遗传数据分析,而无需花费大量精力安装软件、转换数据格式和满足其他技术要求。 COSGAP 在 GitHub (https://github.com/comorment/containers) 上以 GPLv3 许可免费提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
motifbreakR v2: expanded variant analysis including indels and integrated evidence from transcription factor binding databases. TransAnnot-a fast transcriptome annotation pipeline. PatchProt: hydrophobic patch prediction using protein foundation models. Accelerating protein-protein interaction screens with reduced AlphaFold-Multimer sampling. CAPTVRED: an automated pipeline for viral tracking and discovery from capture-based metagenomics samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1