Methodological Considerations Regarding the Quantification of DNA Impurities in the COVID-19 mRNA Vaccine Comirnaty®

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Methods and Protocols Pub Date : 2024-05-08 DOI:10.3390/mps7030041
B. König, Jürgen O. Kirchner
{"title":"Methodological Considerations Regarding the Quantification of DNA Impurities in the COVID-19 mRNA Vaccine Comirnaty®","authors":"B. König, Jürgen O. Kirchner","doi":"10.3390/mps7030041","DOIUrl":null,"url":null,"abstract":"DNA impurities can impact the safety of genetically engineered pharmaceuticals; thus, a specific limit value must be set for them during marketing authorisation. This particularly applies to mRNA vaccines, as large quantities of DNA templates are used for their production. Furthermore, when quantifying the total DNA content in the final product, we must observe that, in addition to the mRNA active ingredient, DNA impurities are also encased in lipid nanoparticles and are therefore difficult to quantify. In fact, the manufacturer of the mRNA vaccine Comirnaty (BioNTech/Pfizer) only measures DNA impurities in the active substance by means of a quantitative polymerase chain reaction (qPCR), whose DNA target sequence is less than just 1% of the originally added DNA template. This means that no direct DNA quantification takes place, and compliance with the limit value for DNA contamination is only estimated from the qPCR data using mathematical extrapolation methods. However, it is also possible to dissolve the lipid nanoparticles with a detergent to directly measure DNA contamination in the final product by using fluorescence spectroscopic methods. Experimental testing of this approach confirms that reliable values can be obtained in this way.","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps7030041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

DNA impurities can impact the safety of genetically engineered pharmaceuticals; thus, a specific limit value must be set for them during marketing authorisation. This particularly applies to mRNA vaccines, as large quantities of DNA templates are used for their production. Furthermore, when quantifying the total DNA content in the final product, we must observe that, in addition to the mRNA active ingredient, DNA impurities are also encased in lipid nanoparticles and are therefore difficult to quantify. In fact, the manufacturer of the mRNA vaccine Comirnaty (BioNTech/Pfizer) only measures DNA impurities in the active substance by means of a quantitative polymerase chain reaction (qPCR), whose DNA target sequence is less than just 1% of the originally added DNA template. This means that no direct DNA quantification takes place, and compliance with the limit value for DNA contamination is only estimated from the qPCR data using mathematical extrapolation methods. However, it is also possible to dissolve the lipid nanoparticles with a detergent to directly measure DNA contamination in the final product by using fluorescence spectroscopic methods. Experimental testing of this approach confirms that reliable values can be obtained in this way.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有关 COVID-19 mRNA 疫苗 Comirnaty® 中 DNA 杂质定量的方法学考虑因素
DNA 杂质会影响基因工程药品的安全性,因此在上市许可过程中必须为其设定特定的限值。这一点尤其适用于 mRNA 疫苗,因为生产过程中会使用大量 DNA 模板。此外,在量化最终产品中的 DNA 总含量时,我们必须注意到,除了 mRNA 活性成分外,DNA 杂质也被包裹在脂质纳米颗粒中,因此很难量化。事实上,mRNA 疫苗制造商 Comirnaty(BioNTech/辉瑞)只通过定量聚合酶链反应(qPCR)来测量活性物质中的 DNA 杂质,其 DNA 目标序列只占最初添加的 DNA 模板的不到 1%。这意味着不需要对 DNA 进行直接定量,只需通过数学推断方法从 qPCR 数据中估算出是否符合 DNA 污染的限值。不过,也可以用洗涤剂溶解脂质纳米粒子,利用荧光光谱法直接测量最终产品中的 DNA 污染情况。对这种方法的实验测试证实,这种方法可以获得可靠的数值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
期刊最新文献
Parasitological Examination of the Digestive System of Wild Boar from a Practical Point of View-Endoparasitological Sampling under Field Conditions. Full Validation and Application to Clinical Research of a High-Performance Liquid Chromatography Method for the Assessment of Urinary 3-Indoxyl Sulfate in Pediatric Patients with Hematopoietic Stem Cell Transplant. A Mathematical Model of Pressure Ulcer Formation to Facilitate Prevention and Management. Evaluation of an Italian Population-Based Programme for Risk Assessment and Genetic Counselling and Testing for BRCA1/2-Related Hereditary Breast and Ovarian Cancer after 10 Years of Operation: An Observational Study Protocol. The Sri Lanka Mother and Newborn Growth (S-MaNGro) Cohort: Protocol of a Nationwide Prospective Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1