{"title":"Monarch Butterfly Optimization-Based Genetic Algorithm Operators for Nonlinear Constrained Optimization and Design of Engineering Problems","authors":"M. A. El-Shorbagy, Taghreed Hamdi Alhadbani","doi":"10.1093/jcde/qwae044","DOIUrl":null,"url":null,"abstract":"\n This paper aims to present a hybrid method to solve nonlinear constrained optimization problems and engineering design problems (EDPs). The hybrid method is a combination of MBO with the crossover and mutation operators of the genetic algorithm (GA). It is called a hybrid monarch butterfly optimization with genetic algorithm operators (MBO-GAO). Combining MBO and GA operators is meant to overcome the drawbacks of both algorithms while merging their advantages. The self-adaptive crossover (SAC) and the real-valued mutation are the GA operators that are used in MBO-GAO. These operators are merged in a distinctive way within MBO processes to improve the variety of solutions in the later stages of the search process, speed up the convergence process, keep the search from getting stuck in local optima, and achieve a balance between the tendencies of exploration and exploitation. In addition, the greedy approach is presented in both the migration operator and the butterfly adjusting operator, which can only accept offspring of the monarch butterfly groups who are fitter than their parents. Finally, popular test problems, including a set of 19 benchmark problems, are used to test the proposed hybrid algorithm, MBO-GAO. The findings obtained provide evidence supporting the higher performance of MBO-GAO compared to other search techniques. Additionally, the performance of the MBO-GAO is examined for several engineering design problems. The computational results show that the MBO-GAO method exhibits competitiveness and superiority over other optimization algorithms employed for the resolution of engineering design problems.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae044","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to present a hybrid method to solve nonlinear constrained optimization problems and engineering design problems (EDPs). The hybrid method is a combination of MBO with the crossover and mutation operators of the genetic algorithm (GA). It is called a hybrid monarch butterfly optimization with genetic algorithm operators (MBO-GAO). Combining MBO and GA operators is meant to overcome the drawbacks of both algorithms while merging their advantages. The self-adaptive crossover (SAC) and the real-valued mutation are the GA operators that are used in MBO-GAO. These operators are merged in a distinctive way within MBO processes to improve the variety of solutions in the later stages of the search process, speed up the convergence process, keep the search from getting stuck in local optima, and achieve a balance between the tendencies of exploration and exploitation. In addition, the greedy approach is presented in both the migration operator and the butterfly adjusting operator, which can only accept offspring of the monarch butterfly groups who are fitter than their parents. Finally, popular test problems, including a set of 19 benchmark problems, are used to test the proposed hybrid algorithm, MBO-GAO. The findings obtained provide evidence supporting the higher performance of MBO-GAO compared to other search techniques. Additionally, the performance of the MBO-GAO is examined for several engineering design problems. The computational results show that the MBO-GAO method exhibits competitiveness and superiority over other optimization algorithms employed for the resolution of engineering design problems.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.