Dong Ma, Chunjie Xu, Shang Sui, Yuanshen Qi, Can Guo, Zhong-ming Zhang, Jun Tian, Fanhong Zeng, S. Remennik, Dan Shechtman
{"title":"Customized heat treatment process enabled excellent mechanical properties in wire arc additively manufactured Mg-RE-Zn-Zr alloys","authors":"Dong Ma, Chunjie Xu, Shang Sui, Yuanshen Qi, Can Guo, Zhong-ming Zhang, Jun Tian, Fanhong Zeng, S. Remennik, Dan Shechtman","doi":"10.1088/2631-7990/ad48ea","DOIUrl":null,"url":null,"abstract":"\n Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials, especially for the alloys with complex phase constituents and heterogenous microstructure. However, the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment process. Herein, we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys, and a wire arc additively manufactured (WAAM) Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification. Through this method, an optimal microstructure (fine grain, controllable amount of LPSO structure and nano-scale β' precipitates) and the corresponding customized heat treatment process (520 °C/30 min + 200 °C/48 h) were obtained to achieve a combination of a high strength of 364 MPa and a considerable elongation of 6.2 %, which surpassed those of other state-of-the-art WAAM-processed Mg alloys. Furthermore, we evidenced for the first time that the favorable effect of the undeformed LPSO structure on the mechanical properties was emphasized only when the nano-scale β’ precipitates were present. It is believed that the findings promote the development of advanced Mg alloys and help to establish customized heat treatment process for additively manufactured materials.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":" 5","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad48ea","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials, especially for the alloys with complex phase constituents and heterogenous microstructure. However, the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment process. Herein, we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys, and a wire arc additively manufactured (WAAM) Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification. Through this method, an optimal microstructure (fine grain, controllable amount of LPSO structure and nano-scale β' precipitates) and the corresponding customized heat treatment process (520 °C/30 min + 200 °C/48 h) were obtained to achieve a combination of a high strength of 364 MPa and a considerable elongation of 6.2 %, which surpassed those of other state-of-the-art WAAM-processed Mg alloys. Furthermore, we evidenced for the first time that the favorable effect of the undeformed LPSO structure on the mechanical properties was emphasized only when the nano-scale β’ precipitates were present. It is believed that the findings promote the development of advanced Mg alloys and help to establish customized heat treatment process for additively manufactured materials.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.