Mobility Data Science: Perspectives and Challenges

IF 1.2 Q4 REMOTE SENSING ACM Transactions on Spatial Algorithms and Systems Pub Date : 2024-05-07 DOI:10.1145/3652158
M. Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, W. Aref, G. Andrienko, N. Andrienko, Yang Cao, Sanjay Chawla, R. Cheng, P. Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, D. Gunopulos, C. S. Jensen, Joon-Seok Kim, Peer Kröger Kyoung-Sook Kim, John Krumm, Johannes Lauer, A. Magdy, Mario A. Nascimento, S. Ravada, Matthias Renz, Dimitris Sacharidis, Flora Salim, Mohamed Sarwat, M. Schoemans, Cyrus Shahabi, Bettina Speckmann, E. Tanin, Xu Teng, Y. Theodoridis, Kristian Torp, Goce Trajcevski, Mar van Kreveld, C. Wenk, Martin Werner, Raymond E. Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang
{"title":"Mobility Data Science: Perspectives and Challenges","authors":"M. Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, W. Aref, G. Andrienko, N. Andrienko, Yang Cao, Sanjay Chawla, R. Cheng, P. Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, D. Gunopulos, C. S. Jensen, Joon-Seok Kim, Peer Kröger Kyoung-Sook Kim, John Krumm, Johannes Lauer, A. Magdy, Mario A. Nascimento, S. Ravada, Matthias Renz, Dimitris Sacharidis, Flora Salim, Mohamed Sarwat, M. Schoemans, Cyrus Shahabi, Bettina Speckmann, E. Tanin, Xu Teng, Y. Theodoridis, Kristian Torp, Goce Trajcevski, Mar van Kreveld, C. Wenk, Martin Werner, Raymond E. Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang","doi":"10.1145/3652158","DOIUrl":null,"url":null,"abstract":"Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art, and describe open challenges for the research community in the coming years.","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3652158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art, and describe open challenges for the research community in the coming years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移动数据科学:视角与挑战
移动数据捕捉移动物体(如人类、动物和汽车)的位置。随着配备 GPS 的移动设备和其他廉价定位跟踪技术的出现,移动数据的收集无处不在。近年来,移动数据的使用已在交通管理、城市规划和健康科学等多个领域产生了重大影响。在本文中,我们将介绍移动数据科学领域。为了实现移动数据科学的统一方法,我们提出了一个包含以下组件的管道:移动数据收集、清理、分析、管理和隐私。针对每个组成部分,我们解释了移动数据科学与一般数据科学的不同之处,调查了当前的技术水平,并描述了未来几年研究界面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
期刊最新文献
Cross- and Context-Aware Attention Based Spatial-Temporal Graph Convolutional Networks for Human Mobility Prediction (Vision Paper) A Vision for Spatio-Causal Situation Awareness, Forecasting, and Planning Mobility Data Science: Perspectives and Challenges Graph Sampling for Map Comparison Latent Representation Learning for Geospatial Entities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1