Numerical Study of Time-Fractional Schrödinger Model in One-Dimensional Space Arising in Mathematical Physics

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Fractal and Fractional Pub Date : 2024-05-07 DOI:10.3390/fractalfract8050277
Muhammad Nadeem, LOREDANA-FLORENTINA Iambor
{"title":"Numerical Study of Time-Fractional Schrödinger Model in One-Dimensional Space Arising in Mathematical Physics","authors":"Muhammad Nadeem, LOREDANA-FLORENTINA Iambor","doi":"10.3390/fractalfract8050277","DOIUrl":null,"url":null,"abstract":"This study provides an innovative and attractive analytical strategy to examine the numerical solution for the time-fractional Schrödinger equation (SE) in the sense of Caputo fractional operator. In this research, we present the Elzaki transform residual power series method (ET-RPSM), which combines the Elzaki transform (ET) with the residual power series method (RPSM). This strategy has the advantage of requiring only the premise of limiting at zero for determining the coefficients of the series, and it uses symbolic computation software to perform the least number of calculations. The results obtained through the considered method are in the form of a series solution and converge rapidly. These outcomes closely match the precise results and are discussed through graphical structures to express the physical representation of the considered equation. The results showed that the suggested strategy is a straightforward, suitable, and practical tool for solving and comprehending a wide range of nonlinear physical models.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050277","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study provides an innovative and attractive analytical strategy to examine the numerical solution for the time-fractional Schrödinger equation (SE) in the sense of Caputo fractional operator. In this research, we present the Elzaki transform residual power series method (ET-RPSM), which combines the Elzaki transform (ET) with the residual power series method (RPSM). This strategy has the advantage of requiring only the premise of limiting at zero for determining the coefficients of the series, and it uses symbolic computation software to perform the least number of calculations. The results obtained through the considered method are in the form of a series solution and converge rapidly. These outcomes closely match the precise results and are discussed through graphical structures to express the physical representation of the considered equation. The results showed that the suggested strategy is a straightforward, suitable, and practical tool for solving and comprehending a wide range of nonlinear physical models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数学物理中出现的一维空间时间分数薛定谔模型的数值研究
本研究为研究卡普托分数算子意义上的时间分数薛定谔方程(SE)的数值解提供了一种创新而有吸引力的分析策略。在这项研究中,我们提出了埃尔扎基变换残差幂级数法(ET-RPSM),它结合了埃尔扎基变换(ET)和残差幂级数法(RPSM)。这种策略的优点是只需在零极限的前提下确定数列系数,而且使用符号计算软件进行的计算量最少。通过所考虑的方法得到的结果是数列解的形式,并且收敛速度很快。这些结果与精确结果非常吻合,并通过图形结构进行讨论,以表达所考虑方程的物理表示。结果表明,所建议的策略是一种直接、合适和实用的工具,可用于求解和理解各种非线性物理模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
期刊最新文献
Riemann–Hilbert Method Equipped with Mixed Spectrum for N-Soliton Solutions of New Three-Component Coupled Time-Varying Coefficient Complex mKdV Equations Fractional Active Disturbance Rejection Positioning and Docking Control of Remotely Operated Vehicles: Analysis and Experimental Validation Fractal Characterization of the Pore-Throat Structure in Tight Sandstone Based on Low-Temperature Nitrogen Gas Adsorption and High-Pressure Mercury Injection Estimation of Fractal Dimension and Segmentation of Brain Tumor with Parallel Features Aggregation Network Fractional Operators and Fractionally Integrated Random Fields on Zν
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1