The Optimal Branch Width Convergence Ratio to Maximize the Transport Efficiency of the Combined Electroosmotic and Pressure-Driven Flow within a Fractal Tree-like Convergent Microchannel
{"title":"The Optimal Branch Width Convergence Ratio to Maximize the Transport Efficiency of the Combined Electroosmotic and Pressure-Driven Flow within a Fractal Tree-like Convergent Microchannel","authors":"Dalei Jing, Peng Qi","doi":"10.3390/fractalfract8050279","DOIUrl":null,"url":null,"abstract":"Building upon the efficient transport capabilities observed in the fractal tree-like convergent structures found in nature, this paper numerically studies the transport process of the combined electroosmotic and pressure-driven flow within a fractal tree-like convergent microchannel (FTCMC) with uniform channel height. The present work finds that the flow rate of the combined flow first increases and then decreases with the increasing branch width convergence ratio under the fixed voltage difference and pressure gradient along the FTCMC, which means that there is an optimal branch width convergence ratio to maximize the transport efficiency of the combined flow within the FTCMC. The value of the optimal branch convergence ratio is highly dependent on the ratio of the voltage difference and pressure gradient to drive the combined flow. By adjusting the structural and dimensional parameters of the FTCMC, the dependencies of the optimal branch convergence ratio of the FTCMC on the branching level convergence ratio, the length ratio, the branching number, and the branching level are also investigated. The findings in the present work can be used for the optimization of FTCMC with high transport efficiency for combined electroosmotic and pressure-driven flow.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8050279","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Building upon the efficient transport capabilities observed in the fractal tree-like convergent structures found in nature, this paper numerically studies the transport process of the combined electroosmotic and pressure-driven flow within a fractal tree-like convergent microchannel (FTCMC) with uniform channel height. The present work finds that the flow rate of the combined flow first increases and then decreases with the increasing branch width convergence ratio under the fixed voltage difference and pressure gradient along the FTCMC, which means that there is an optimal branch width convergence ratio to maximize the transport efficiency of the combined flow within the FTCMC. The value of the optimal branch convergence ratio is highly dependent on the ratio of the voltage difference and pressure gradient to drive the combined flow. By adjusting the structural and dimensional parameters of the FTCMC, the dependencies of the optimal branch convergence ratio of the FTCMC on the branching level convergence ratio, the length ratio, the branching number, and the branching level are also investigated. The findings in the present work can be used for the optimization of FTCMC with high transport efficiency for combined electroosmotic and pressure-driven flow.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.