{"title":"A gradient-descent iterative learning control algorithm for a non-linear system","authors":"Zhi-ying He, Hongji Pu","doi":"10.1177/01423312241247873","DOIUrl":null,"url":null,"abstract":"Original iterative learning control (OILC) has been proved a powerful tool in dealing with the model-free control problems by repetitively corrections based on the control error. However, the steady-state error under widely-used proportional-type original iterative learning control (P-type OILC) is highly corresponded to the proportional learning gain, making the algorithm parameter-determined. Therefore, a new gradient-descent iterative learning control (GDILC) algorithm is proposed to achieve a parameter-free approach by simulating the gradient-descent process. First, GDILC problem is formulated mathematically. Next, the idea of the algorithm is proposed, the analyses of the convergence and the steady-state error are conducted and the algorithm is implemented. GDILC will generate a random correction with a gradient-descent upper bound, rather than a correction proportional to the error in P-type OILC. Finally, illustrative and application simulations are conducted to validate the algorithm. Results show that the algorithm will be convergent after adequate iterations under proper corrections. The steady-state error will be less affected by the algorithm parameters under GDILC than that under OILC.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"43 26","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312241247873","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Original iterative learning control (OILC) has been proved a powerful tool in dealing with the model-free control problems by repetitively corrections based on the control error. However, the steady-state error under widely-used proportional-type original iterative learning control (P-type OILC) is highly corresponded to the proportional learning gain, making the algorithm parameter-determined. Therefore, a new gradient-descent iterative learning control (GDILC) algorithm is proposed to achieve a parameter-free approach by simulating the gradient-descent process. First, GDILC problem is formulated mathematically. Next, the idea of the algorithm is proposed, the analyses of the convergence and the steady-state error are conducted and the algorithm is implemented. GDILC will generate a random correction with a gradient-descent upper bound, rather than a correction proportional to the error in P-type OILC. Finally, illustrative and application simulations are conducted to validate the algorithm. Results show that the algorithm will be convergent after adequate iterations under proper corrections. The steady-state error will be less affected by the algorithm parameters under GDILC than that under OILC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.