Gopinathan Sumathi, Mini, Prathi Vijaya, Kumar, Shaik Mohammed
{"title":"Numerical Analysis Study of Chemically Radiative MHD Williamson Nanofluid Flow over an Inclined Surface with Heat Source","authors":"Gopinathan Sumathi, Mini, Prathi Vijaya, Kumar, Shaik Mohammed","doi":"10.37934/cfdl.16.9.126142","DOIUrl":null,"url":null,"abstract":"The design and optimization of systems such as nuclear reactors, solar collectors, and thermal power plants may benefit from an understanding of the behaviour of nanofluids with chemical processes, thermal radiation, and magnetic fields over inclined surfaces with heat sources.This review looks at the magnetohydrodynamic (MHD) flow of a Williamson nanofluid over an inclinable stretched sheet and the impact of thermal radiation, heat source, and chemical processes. The outcomes of the generation of heat or absorption, as well as thermal radiation, are all factored into account in the energy equation. On the other hand, the mass transport equation also takes into account chemical interactions.The similarity substitution serves to turn the governed partial differential equations for velocity, temperature, and concentration into ordinary differential equations, which are then numerically resolved with Mathematica's NDSolve program. Changes in temperature, concentration, and dimensionless velocity as a function of various factors are graphically touched upon. The temperature diminishes while the Prandtl number accelerates as the thermal boundary layer thins and the viscosity enrichment. The temperature contour develops along with the magnetic field strength. When all the parameters were compared for a particular case, a very good association was discovered. Depending on the precise conclusions and understandings drawn from the investigation of chemically radiative MHD nanofluid flow over inclined surfaces with a heat source, the applications may range greatly. It's important to remember that such research often aids in the creation of more effective and environmentally friendly solutions in a variety of sectors.","PeriodicalId":9736,"journal":{"name":"CFD Letters","volume":"83 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CFD Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/cfdl.16.9.126142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The design and optimization of systems such as nuclear reactors, solar collectors, and thermal power plants may benefit from an understanding of the behaviour of nanofluids with chemical processes, thermal radiation, and magnetic fields over inclined surfaces with heat sources.This review looks at the magnetohydrodynamic (MHD) flow of a Williamson nanofluid over an inclinable stretched sheet and the impact of thermal radiation, heat source, and chemical processes. The outcomes of the generation of heat or absorption, as well as thermal radiation, are all factored into account in the energy equation. On the other hand, the mass transport equation also takes into account chemical interactions.The similarity substitution serves to turn the governed partial differential equations for velocity, temperature, and concentration into ordinary differential equations, which are then numerically resolved with Mathematica's NDSolve program. Changes in temperature, concentration, and dimensionless velocity as a function of various factors are graphically touched upon. The temperature diminishes while the Prandtl number accelerates as the thermal boundary layer thins and the viscosity enrichment. The temperature contour develops along with the magnetic field strength. When all the parameters were compared for a particular case, a very good association was discovered. Depending on the precise conclusions and understandings drawn from the investigation of chemically radiative MHD nanofluid flow over inclined surfaces with a heat source, the applications may range greatly. It's important to remember that such research often aids in the creation of more effective and environmentally friendly solutions in a variety of sectors.